
FROM ROOTD TO XROOTD, FROM PHYSICAL TO LOGICAL FILES:
EXPERIENCE ON ACCESSING AND MANAGING DISTRIBUTED DATA

P. Jakl, Nuclear Physics Institute, Prague, Czech Republic
J. Lauret, Brookhaven National Laboratory, Upton, NY 11973, USA

A. Hanushevsky, Stanford Linear Accelerator Center, Menlo Park, CA 94025, USA
A. Shoshani, A. Sim, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

With its increasing data samples, the RHIC/STAR exper-
iment has faced a challenging data management dilemma:
solutions using cheap disks attached to processing nodes
have rapidly become economically beneficial over standard
centralized storage. While more difficult to manage, the
STAR experiment moved to a storage attached to process-
ing nodes that is, a widely distributed data model rendered
viable by the introduction of a scalable replica catalog, and
a home-brewed data replication and data management sys-
tem. Access to the data was then provided via the rootd
TNetfile API-based integrated in its framework.
However, the system has a few flaws and STAR has moved
to an Xrootd based infrastructure, a tool initially used in the
Babar experiment for its data management. We will report
in this paper our model and configuration, explain the pre-
vious and current approach and the reasons for migration
from one to the other as well as presenting our experience
in deploying and testing Xrootd.
We will introduce our plan toward a full grid solution and
the future incarnation of our approach: the merging of two
technologies and the best of two worlds, Xrootd and SRM
[4], [5], [6]. This will enable the dynamic management
of disk storage at the xrootd nodes, as well as provide
transparent access to remote storage nodes, including Mass
Storage Systems.

INTRODUCTION

Driven by increasingly complex problems and propelled
by increasingly powerful technology, today’s science is as
much based on computation, data analysis, and collabo-
ration as on the efforts of individual experimentalists and
theorists. But even as computer power, data storage, and
communication continue to improve exponentially, compu-
tational and storage resources are failing to keep up with
what scientists demand of them.
Several High Energy and Nuclear Physics experiments
such as Solenodial Tracker at Relativistic Heavy Ion Col-
lider (STAR RHIC) at Brookhaven National Laboratory
produce PetaByte of data (raw and reconstructed) per year
(see Fig. 1) which bears deep puzzle to manage data over
the normal data size storage in today’s personal environ-
ment.

Figure 1: Raw data projection for the RHIC experiment.
These numbers need to be multiplied by a factor of 2 for
STAR to account for one pass of reconstructed data.

DISTRIBUTED VS CENTRALIZED DATA
MANAGEMENT

This challenge could in principle be resolved by us-
ing solutions involving standard centralized storage man-
aged by NFS [15], PanFS [16], Lustre [17], GPFS [18]
or instead, using cheap disks attached to processing nodes
which represents a greater economical benefit. While the
two approaches seem a-priori radically different, they nev-
ertheless share a common problem which is the ability to
manage storage distributed among multiple servers or com-
ponents (blade for PanFS, etc . . . ) but distributed storage
pauses numerous additional challenges one would need to
take into account. At the end, economic leaded STAR to
choose a model where cheap and widely distributed stor-
age will prevail over centralized solutions as illustrated in
Fig. 2). In a centrally distributed data model, a naive ap-

Figure 2: RHIC Tier-0 capacity profile

proach of using NFS-like solution is limited by the ability
of the infrastructure and software to efficiently balance the
load amongst the data servers (a few) available to the users
or the data manager. However, a deeper requirements anal-



ysis shows that this kind of solution is not acceptable for
many well-known reasons. Thousands of concurrent ac-
cesses from end users batch jobs that continuously analyze
the data in a completely random way would for example
greatly overcome the scalability of the basic NFS architec-
ture. To achieve load balancing in such environment, one
could imagine spreading the dataset randomly on all avail-
able storage but this would imply a complex organization
of the data, a possibly dynamic re-organization of the data
sets as demands changes in addition of an accurate file cat-
alogue (and cataloguing capabilities). But even though one
reverts to such techniques, NFS would still expose large
pools of disk subject to equally massive data losses or cor-
ruption on crashes or hardware failures: most jobs are not
much tolerant to such events and if a file simply do not ex-
ists, it is likely with every common framework to see the
job dies without any possibility to search for other ”copy”
of a file. Solutions such as GPFS or PanFS resolve some
of those load balancing issues by pushing down the han-
dling of the load balancing and data replication to a lower
hardware or driver level, presenting to the user a seamless
NFS ”look-and-feel” to the user without the burden of a
learning curve. Perhaps encouraging solutions, costs re-
main extremely prohibitive.
To overcome some of these limitations, the natural alterna-
tive is building a ”mesh” of loosely coupled data servers.
Within this model, one would naturally fragment the stor-
age to multiple smaller ones, the loss of one data server
would not make a dramatic over impact providing one
could still detect and recover from failures and dynami-
cally re-populate lost data which otherwise would starve
the data sets availability. From a server component aspect,
ROOTD [12] offers the solution to share this load between
many machines by keeping the files on the farm local disks.
A ROOT client data access method could provide a way
to reach the remote data transparently to the users of the
framework. We will now discuss the engineering of such
model and introduce its limitations.

ROOTD DISTRIBUTED DATA MODEL

Any experiments facing Petabytes scale problems are in
need for a highly scalable hierarchical storage system to
keep a permanent copy of the data off disks. The media
are usually tape as to date; it has proven to be cheaper than
any other solutions. STAR and all RHIC experiments use a
High Performance Storage System called HPSS [14]. Hav-
ing a large archive is not sufficient of course as million of
files would make the recovery of one file a needle in a hay
stack nightmare. The second vital component is to arm the
experiment with a robust and scalable catalogue, keeping
the Millions of files and potentially, an order of magnitude
higher number of replicas at reach. Here, we will not dis-
cuss the need or the differences between file, replica and
meta-data catalogues but will assume that from a user per-
spective, queries to a meta-data catalogue should resolve
into datasets, physical or logical.

To this aim, STAR had developed a scalable and reliable
File catalog [13] that not only holds information about
physical location of a file but also meta-data information
of the file such as numbers of events, triggers etc. being
used by its users on a daily basis to identify data sets.
Illustrated in Fig. 3, the distributed data STAR environment
is a large set of nodes (320) with each node having from one
to 3 local drives. Since the data always has a primary copy
deposited by the data-reconstruction process into HPSS,
additional tools are needed to retrieve and populate the dis-
tributed disks. To deal with this effort, the DataCarousel
[13] system was developed. Its main purpose is to organize
the requests made by users as well as by data population
requests made on behalf of the home-grown data manage-
ment tool. Such cohesive data access and request throttling
is handled by a set of compiled code interfacing with HPSS
API and scripts implementing policies managing the entire
system of requests therefore, preventing chaos. In this sys-
tem, requests are stored in a MySQL database and a de-
cision making, taking into account both usage policies and
file relative location on one particular tape are taken into ac-
count to therefore restrict excessive and thus much slower
restore due to mounting of robotic tapes. All requests to
retrieve a file are handled asynchronously.
However, the choice of where to restore the data from all
available nodes is not a decision made by the DataCarousel
itself its purpose only being to coordinate restore requests
from HPSS. To achieve this, an additional set of scripts re-
lies on space monitoring information to determine the free
storage and chose amongst the many node solely based on
space availability criterion coupled with the minimal set
of files per storage one would need for a viable operation.
Additionally, Spiders [13] keeps track of newly appearing
files on each storage element and add them to the replica
catalog. The Spiders also detects data which disappear, the
total time to update the entire catalog being of the order
of minutes regardless of the number of nodes. Eventually,

Figure 3: ROOTD distributed data model used in STAR
experiment

and to complete the illustrative model of Fig. 3, all user
data-intensive batch jobs read a file remotely via ROOTD,
their jobs themselves are submitted according to the selec-
tion of data sets, a Meta-Scheduler front end would resolve
from the STAR FileCatalog. This abstraction layer makes
the model viable as all files in this model would otherwise



be strongly associated to server and storage that is, requires
exact physical location knowledge. A user would hardly be
able to keep track of the data-sets and their dynamic. The
system has been extremely scalable when it comes to in-
creasing the number of data servers, including its back-end
catalogue and its relative accuracy over a ten million repli-
cas size problem.
But while sophistication and faultless features could be
achieved at a first glance, the system still has its major flaws
and deficiencies. The biggest is the lack of dynamic fea-
tures. ROOTD being by essence Physical File Name (PFN)
oriented, it first needs constant cataloguing and therefore
the system lacks the flexibility of moving the data around
without special handling. Even though the files would be
distributed at multiple places, physical file access requires
exact reference at submission: by the time the job really
starts, the entire load picture of the cluster may very well
be different from what was used for the file access decision
making process. Overloaded and not responding nodes
could suddenly be requested and the scheduled job dies.
This is inherent to the latency between a job dispatching
and the work unit to really start. In fact, another of those
problems comes when a node suddenly re-appears but the
disk holding the data was wiped-clean (maintenance down-
time due to disk failure and replacement).
In such cases, the Spider do not only have little time to up-
date its information but the jobs was furthermore already
scheduled with the previous knowledge of file present on
that storage; this would be fatal to a job. More obvious,
the data population is relatively static: users could access
only the data sets already pre-populated in the system but
never have a chance to access data sets available on the
mass storage only. A dynamic system must therefore have
the capability to hand shake with mass storage systems. Fi-
nally, a more subtle consideration, all users in rootd are
trusted and no authorization mechanism exists in this sys-
tem as there lacks write access and advanced authorization
layers. Also, such system should be self-adaptive, relying
on its own coordination mechanism to balance load and ac-
cess rather than relying on an external component provid-
ing mapping from meta-data or logical to physical name
space.

XROOTD AS NEXT GENERATION TOOL
FOR DISTRIBUTED DATA ACCESS

All mentioned issues led us to search for new generation
tool for managing distributed data. Some of the needed
characteristics are explained in references [1], [2]:

• Multiple servers have to cooperate with the purpose of
handling huge amounts of distributed (and redundant
if necessary) data without forcing the client to know
which server to contact to access a particular file.

• One would benefit from having the server hide from
the client applications its underlying file system types,
including mass storage. In other words, access to

any files in a given namespace should be transparently
achieved regardless of the storage.

• In order to efficiently distribute the load between clus-
ters of servers, a load balancing mechanism is needed.

• The system resources (sockets, memory, cache, disk
accesses, CPU cycles, etc...) have to be used at the
best, at both client and server sides.

• A high degree of fault tolerance at the client
side is mandatory to minimize the number of
jobs/applications which have to be restarted after a
transient or partial server side problem or any kind of
network glitch or damaged files

All of these requirements complies the eXtended rootd sys-
tem also known as xrootd [1], [2], [3]. Its structure allows
the construction of single server data access sites up to load
balanced environments and structured peer-to-peer deploy-
ments, in which many servers cooperate to give an exported
uniform namespace. If we compare side to side rootd and
how xrootd system can solve our problems with its archi-
tecture and features, we arrive at the following conclusions.
First, ROOTD knows only about PFN forcing a linear scal-
ing of the catalogue as the number of data servers increase:
XROOTD on the contrary knows about LFN, and refer to
LFN for any data located within the xrootd system; there
is no need for external additional cataloging procedure or
Spiders. XROOTD load balancing mechanism determines
which server is the best for client’s request to open a file;
nodes are selected based on reported information such as
load, network I/O, memory usage and available space en-
suring that the scenario of an on-responsive node would
never occur. XROOTD additionally has fault tolerance fea-
tures and load could be taken by other data-servers holding
the data shall one data server be offline. But additionally,
XROOTD implements a plugins to interact with mass stor-
ages. Missing data can be again restored from MSS within
the user’s job and the job startup latency is no longer an
issue. If the file is not present by the time the job starts, it
will be imported into the xrootd system space again. Within
the same feature, one could imagine a completely dynamic
data space population, no longer relying on pre-staged data
but on a mechanism of ”data on demand”. As users re-
quest new data, it appears in the system unlike our rootd
based system where data sets have to be judiciously cho-
sen before hand. Finally, XROOTD has a plethora of Au-
thorization plug-in which resolves the ”trusted/untrusted”
write access issue hinted earlier and open avenues to a finer
access mechanism granularity.
On Fig. 4 we show a quick overview of the xrootd ar-
chitecture [1] and how user’s requests are handled within
the xrootd cluster. Each request of a file is steered on
node called Redirector which broadcasts messages to other
nodes with a simple question ”Do you have the file XX?”
The whole structure consists of other layers allowing build-
ing a B64 tree structure and therefore used extremely fast
64-bits logical operations. When the question is answered,



the client is redirected to the particular node holding the
data. This redirection prevents from overloading the head
of the structure and also allows overspreading I/O load
across the farm. The file is scheduled to be staged from
HPSS when no node has a particular file or in case that all
servers which serve the file are overloaded.

Figure 4: XROOTD architecture

XROOTD deployment/contribution

During the initial deployment, we had to contend with a
few short comings such an initial limitation to 64 nodes per
re-director. We reported this issue in February 2005 and a
solution was available in April/May 2005. Within the ac-
tivation of the authentication plugin we bumped on shaky,
not well tested and documented part of xrootd which we
contributed by providing bug fixes and possibility to au-
thenticate as other user. One of the next contributions to
the xrootd team was bug fixes of script measuring the load
of servers: this script used pipe listing to measure actual
I/O of a node. This worked well on Solaris platform but
would hang on Linux platform due to a slightly different
behavior of the netstat command. In addition, the computa-
tion of the IO was corrected. Finally, and to achive smooth
transition from rootd(PFN) to xrootd (LFN only) we had to
realize changes in the xrootd code allowing for support of
both PFN and LFN. Further discussion lead to the design of
a generic interface for the conversion of PFN ro LFN and
vice-versa.
In our testing of the MSS plugin, we further observed that
many data-serevrs may request data simultaneously, there-
fore falling into the uncoordinated request trap. This was
exacerbated by the use of xrootd in such a large cluster and
by many users: the net effect and event led to an HPSS
collapse and downtime. While our plan is to go toward
an SRM layer underneath as we will discuss in the next
section, we decided in the interim to adapt our system by
retrieving files from MSS using the DataCarousel frame-
work.

XROOTD-SRM INTEGRATION
While the xrootd seems to satisfy our most immediate

needs, it could itself be improved and extended. For exam-
ple, Xrootd does not move files from data-servers to data-
servers or cache to cache but restore files fro MSS. This
may be slow and inefficient. Additionally, the system is
not able import files from other space management systems
or even across the grid (dCache, Castor . . . ). In a large
scale pool of nodes, if ALL clients ask for a file restore
from MSS, the system would exhibit a lack of coordination
of accesses MSS resources as it lacks a request”queue”.
This advanced feature is needed for any coordinated re-
quests and is especially important in a shared access en-
vironment where other tools, such as bulk data transfers to
remote sites, may also perform MSS staging requests. No
advanced reservation exists, no extended policies per users
or role based giving advanced granting of permissions to a
user.
In addition, there are other middle-ware designed for space
management and only space management. Specifically,
the grid middle-ware component called Storage Resource
Managers (SRMs) [4], [5], [6] has for function to provide
dynamic space allocation and file management on shared
distributed storage systems. SRMs are designed to man-
age space, meaning designed to negotiate and handle the
assignment of space for users and also manage lifetime of
spaces. In addition of file management, they are respon-
sible for managing files on behalf of user and provide ad-
vanced features such as pinning files in storage till they are
released or also even manage lifetime of files that could be
removed after specific time. SRMs also manage file sharing
with configurable policies regulating what should reside on
storage or what to evict. One of the powerful features of
SRMs is ability of bringing the files from remote locations
including from other site.
SRMs have 3 types of storage resource managers: disk
Resource Manager (DRM) manages one or more disk re-
sources, Tape Resource Manager (TRM) manages the ter-
tiary storage system (e.g. HPSS) and Hierarchical Re-
source Manager (HRM=TRM+DRM) stages files from ter-
tiary storage into its disk cache. On the other hand, while
SRMs do manage space efficiently and can talk to other
SRM (bringing for example files from other caches or
SRM-aware tools), they are missing load balancing capa-
bilities, a global data aggregator or a global view of stor-
age space all of which was significantly showed as a great
advantage of XROOTD. We therefore propose to leverage
these technologies and integrate to Xrootd and SRM back-
end for managing space.

XROOTD-SRM components architecture
Both systems have their own inner architecture and the

task of integration lies on the question on how to bind them
together. Fortunately, Xrootd with its given layered archi-
tecture [1] allows us to re-use main elements and replace
unwanted ones by SRM components has it is showed in



Fig. 5. Xrootd will remain responsible for managing disk
cluster and the access to the global namespace, DRM will
be accountable for managing disk cache and HRM will
be responsible for staging files from MSS. In other words
xrootd becomes a client of SRMs. While a functional im-
plementation is not yet available at the time of this paper,
basic class interface designed were integrated to the Xrootd
to provide further hooks for this work to complete.

Figure 5: XROOTD-SRM components interaction

SUMMARY
We deployed xrootd system on 320 nodes at STAR Tier-

0 center making this functional deployment the biggest
xrootd deployment in the world. In addition to stability
of the system, modulo few fixes in year 2005, the sys-
tem appears to be stable and easily configurable [7], [8],
[9], [10], [11]. From restart of data-servers ”underneath”
a running process to control file losses, we tested several
fault-tolerant features which all performed beyond expec-
tations (the clients even recovers from a global restart of
all data-servers). The monitoring of XROOTD behavior by
Ganglia toolkit [19] system in large scale and over long pe-
riod of time haven’t shown no significant impact on CPU
or memory usage on nodes making the integration of such
system even more palatable to reluctant system administra-
tors, concerned of general impact a new system may intro-
duce. Additionally, the flexible architecture of the Xrootd
system appears to be suitable for a fusion of this middle-
ware with SRM technologies which in turn, will bring to
Xrootd Grid-aware capabilities.

ACKNOWLEDGEMENTS
The main author would like to express his thanks to

Dr. Jérôme Lauret for leading him throughout this project
and for providing advices and would to also like to thank
Andy Hanushevsky, Arie Shoshani and Alex Sim for in-
spiring meetings and help to accomplish our goals.
This work was supported in part by the HENP Divisions of
the Office of Science of the U.S. DOE; the U.S. NSF; IRP
and GA of the Czech Republic.

REFERENCES
[1] A. Hanushevsky, A. Dorigo, F. Furano: The Next Genera-

tion Root File Server, Proc. CHEP2004, 2004

[2] A. Dorigo, P. Elmer, F. Furano, A. Hanushevsky: XROOTD
- A highly scalable architecture for data access, Proc.
WSEAS2005, 2005

[3] A. Hanushevsky, H. Stockinger: Proxy Service for the
xrootd Data Server, Proc. SAG2004,

[4] A. Shoshani, A. Sim, J. Gu: Storage Resource Managers:
Essential Components for the Grid, In Grid Resource Man-
agement: State of the Art and Future Trends, pp. 321-340,
Kluwer Academic Publishers, 2003.

[5] L. Bernardo, A. Shoshani, A. Sim, H. Nordberg: ”Access
Coordination of Tertiary Storage for High energy Physics
Applications,” IEEE Symposium on Mass Storage Systems
2000, pp. 105-118, 2000

[6] A. Shoshani, A. Sim, J. Gu: Storage Resource Managers:
Middleware Components for Grid Storage, IEEE Sympo-
sium on Mass Storage Systems, 2002 (MSS ’02)

[7] A. Hanushevsky: XRD Configuration Reference, SLAC,
2005, http://xrootd.slac.stanford.edu/

[8] A. Hanushevsky: Open File System & Open Stor-
age System Configuration Reference, SLAC, 2005,
http://xrootd.slac.stanford.edu/

[9] A. Hanushevsky: Open Load Balancing Configuration Ref-
erence, SLAC, 2005, http://xrootd.slac.stanford.edu/

[10] A. Hanushevsky: GANIS, G.: Authentication & Ac-
cess Control Configuration Reference, SLAC, 2005,
http://xrootd.slac.stanford.edu/

[11] A. Hanushevsky: Cache File System Support MPS Refer-
ence, SLAC, 2004, http://xrootd.slac.stanford.edu/

[12] ROOTD, http://root.cern.ch/root/NetFile.html

[13] STAR Computing, http://www.star.bnl.gov/STAR/comp/

[14] High Performance Storage System, http://www.hpss-
collaboration.org/hpss/index.jsp

[15] Network File System (NFS),
http://www.tldp.org/LDP/nag/node140.html

[16] Panasas File System (PanFS),
http://www.panasas.com/panfs.html

[17] Lustre cluster file system,
http://www.lustre.org/documentation.html

[18] General Parallel FileSystem (GPFS), http://www-
03.ibm.com/servers/eserver/clusters/software/gpfs.html

[19] Ganglia toolkit, http://ganglia.sourceforge.net/


