CERN DNS Load Balancing

Vladimír Bahyl IT-FIO Nicholas Garfield IT-CS

Outline

- Problem description
- Possible solutions
- DNS an ideal medium
- Round robin vs. Load Balancing
- Evolution of DNS setup at CERN
- Application Load Balancing system
 - Server process
 - Client configuration
- Operational examples
- Statistics

13 February

Conclusion

Problem description

- User expectations of IT services:
 - 100% availability
 - Response time converging to zero
- Several approaches:
 - Bigger and better hardware (= increasing MTBF)
 - Redundant architecture
 - Load balancing + Failover
- Situation at CERN:
 - Has to provide uninterrupted services
 - Transparently migrate nodes in and out of production
 - Caused either by scheduled intervention or a high load
 - Very large and complex network infrastructure

13 February

Possible solutions

- Network Load Balancing
 - A device/driver monitors network traffic flow and makes packet forwarding decisions
 - Example: Microsoft Windows 2003 Server NLB
 - Disadvantages:
 - Not applications aware
 - Simple network topology only
 - Proprietary
- OSI Layer 4 (the Transport Layer TCP/UDP) switching
 - Cluster is hidden by a switch behind a single virtual IP address
 - Switch role also includes:
 - Monitoring of all nodes in the cluster
 - Keep track of the network flow
 - Forwarding of packets according to policies
 - Example: Linux Virtual Server, Cisco Catalyst switches
 - Disadvantages:

13 February

- Simplistic tests; All cluster nodes should be on the same subnet
- Expensive for large subnets with many services
- Switch becomes single point of failure

Domain Name System – ideal medium

- Ubiquitous, standardized and globally accessible database
- Connections to any service have to contact DNS first
- Provides a way for rapid updates
- Offers round robin load distribution (see later)
- Onaware of the applications
 - Need for an arbitration process to select best nodes
 - Decision process is not going to be affected by the load on the service

Application load balancing and failover

DNS Round Robin

Allows basic load distribution

I xpl us001 ~ > host I xpl us
I xpl us. cern. ch has address 137. 138. 4. 171 (1)
I xpl us. cern. ch has address 137. 138. 4. 177 (2)
I xpl us. cern. ch has address 137. 138. 4. 178 (3)
I xpl us. cern. ch has address 137. 138. 5. 72 (4)
I xpl us. cern. ch has address 137. 138. 4. 169 (5)

I xpl us001 ~ > host I xpl us
I xpl us. cern. ch has address 137. 138. 4. 177 (2)
I xpl us. cern. ch has address 137. 138. 4. 178 (3)
I xpl us. cern. ch has address 137. 138. 5. 72 (4)
I xpl us. cern. ch has address 137. 138. 4. 169 (5)
I xpl us. cern. ch has address 137. 138. 4. 171 (1)

No withdrawal of overloaded or failed nodes

DNS Load Balancing and Failover

Requires an additional server = arbiter

- Monitors the cluster members
- Adds and withdraw nodes as required
- Updates are transactional

13 February

Client never sees an empty list

I xpl us001 ~ > host I xpl us
I xpl us. cern. ch has address 137. 138. 4. 808
I xpl us. cern. ch has address 137. 138. 4. 788
I xpl us. cern. ch has address 137. 138. 4. 789
I xpl us. cern. ch has address 137. 138. 4. 789
I xpl us. cern. ch has address 137. 138. 5. 789

Load Balancing Arbiter

- Collects metric values
 - Polls the data over SNMP
 - Sequentially scans all cluster members
- Selects the best candidates
 - Lowest positive value = best value
 - Other options possible as well
 - Round robin of alive nodes
- Updates the master DNS
 - Uses Dynamic DNS
 - With transactional signature keys (TSIG) authentication
- At most once per minute per cluster
- Active and Standby setup
 - Simple failover mechanism
 - Heartbeat file periodically fetched over HTTP
- Daemon is:
 - Written in Perl
 - Packaged in RPM
 - Configured by a Quattor NCM component

13 February

Application Cluster nodes

SNMP daemon

- Expects to receive a specific MIB OID
- Passes control to an external program
- Load Balancing Metric
 - /usr/local/bin/lbclient
 - Examines the conditions of the running system
 - Computes a metric value
 - Written in C
 - Available as RPM
 - Configured by a Quattor NCM component

13 February

Load Balancing Metric

- System checks return Boolean value
 - Are daemons running (FTP, HTTP, SSH) ?
 - Is the node opened for users ?
 - Is there some space left on /tmp ?
- System state indicators
 - Return a (positive) number
 - Compose the metric formula
 - System CPU load
 - Number of unique users logged in
 - Swapping activity
 - Number of running X sessions
- Integration with monitoring
 - Decouple checking and reporting
 - Replace internal formula by a monitoring metric
 - Disadvantage introduction of a delay

Easily replaceable by another site specific binary

13 February

Operational examples

- LXPLUS Interactive Login cluster
 - SSH protocol
 - Users log on to a server and interact with it
- CASTORGRID GridFTP cluster
 - Specific application on a specific port
 - Experimented with live evaluation of the network traffic by the metric binary
- WWW servers
- Could be any application client metric concept is sufficiently universal !

State Less vs. State Aware

- System is not aware of the state of connections
- State Less Application
 - For any connection, any server will do
 - Our system only keeps the list of available hosts up-to-date
 - Example: WWW server serving static content
- State Aware Application
 - Initial connection to a server; subsequent connection to the same server
 - Our load balancing system can not help here
 - Solution: after the initial connection the application must indicate to the client where to connect
 - Effective bypass of the load balancing
 - Example: ServerName directive in Apache daemon

LXPLUS statistics

Selection process - 2 weeks totals comparision

13 February

LXPLUS statistics

Metric value of 2 nodes - 2 weeks comparision

Conclusion

- Dynamic DNS switching offers possibility to implement automated and intelligent load-balancing and failover system
- Scalable
 - From two node cluster to complex application clusters
 - Decoupled from complexity of the network topology
- Need for an Arbiter
 - Monitor the cluster members
 - Select the best candidates
 - Update the published DNS records
- Built around OpenSource tools
- Easy to adopt anywhere

Thank you.

http://cern.ch/dns

(accessible from inside CERN network only)

Vladimír Bahyl http://cern.ch/vlado

13 February