
DNS LOAD BALANCING AND FAILOVER MECHANISM AT CERN

V. Bahyl, N. Garfield, CERN, Geneva, Switzerland

Abstract

Availability approaching 100% and response time
converging to 0 are two factors that users expect of any
system they interact with. Even if the real importance of
these factors is a function of the size and nature of the
project, todays users are rarely tolerant of performance
issues with system of any size.

Commercial solutions for load balancing and failover
are plentiful. Citrix NetScaler, Foundry ServerIron series,
Coyote Point Systems Equalizer and Cisco Catalyst SLB
switches, to name just a few, all offer industry standard
approaches to these problems. Their solutions are
optimized for standard protocol services such as HTTP,
FTP or SSH but it remains difficult to extend them for
other kinds of application. In addition to this, the
granularity of their failover mechanisms are per node and
not per application daemon, as is often required.
Moreover, the pricing of these devices for small projects
is uneconomical.

This paper describes the design and implementation of
the DNS load balancing and failover mechanism currently
used at CERN. Our system is based around SNMP, which
is used as the transport layer for state information about
the server nodes. A central decision making service
collates this information and selects the best candidate(s)
for the service. IP addresses of the chosen nodes are
updated in DNS using the DynDNS mechanism.

The load balancing feature of our system is used for
variety of standard protocols (including HTTP, SSH,
(Grid)FTP, SRM) while the (easily extendable) failover
mechanism adds support for applications like CVS and
databases. The scale, in terms of the number of nodes, of
the supported services ranges from a couple (2-4), up to
around 100. The best known services using this
mechanism at CERN are LXPLUS and CASTORGRID.

This paper also explains the advantages and
disadvantages of our system, and advice is given about
when it is appropriate to be used.

Last, but not least, given the fact that all components of
our system are build around freely available open source
products, our solution should be especially interesting in
low resource locations.

INTRODUCTION
There are several approaches to improving system

availability. Other than increasing mean time between
failure (MTBF) at the hardware level, the careful setup of
operating system parameters and a redundant network
architecture, load-balancing and failover clustering are the
two main techniques for improving availability. Load-
balancing addresses the problem of resource consumption

while failover simply solves the problem of whether or
not a node exists from the client perspective.

CERN’s network is large and complex. In order to aid
the operation of the network a database system is
employed to ensure the coherence of the network
infrastructure. Typically a network management system
strives to correlate information about how connected
nodes are integrated into the network infrastructure by
relating the device to sockets, cables, switch ports, IP
subnets and finally IP addresses and host names. Network
prefixes, interface names and IP addresses are extracted
from the database and published in the DNS as forward
and reverse zones. Updates are not required frequently, in
general approximately every few hours or when needed.
This model promotes DNS stability in the forward and
reverse zones, but contains no knowledge of the use or
purpose of the devices that are connected to the network.
The database is unaware of the actual computer services
running on the network. However, DNS is a ubiquitous,
standardized and globally accessible database making it
the ideal medium for the publication of services.

Reflecting the desire to promote a stable network
infrastructure, a long Time to Live (TTL) value is
configured in the CERN DNS namespace (1 hour). If the
record changes on the server side the client will be
unaware of the change until the TTL has passed.

The conditions of the CERN environment are such that
while official services must be provided uninterrupted, it
must also be possible to transparently migrate machines
in and out of a particular service, perhaps for upgrades,
hardware interventions or because they are simply
required in another service (i.e. failover). Another reason
could simply be because a machine might temporarily be
under high load and it would be convenient to replace it
with a less utilized machine (i.e. load-balancing).

For a long time DNS has provided a simple and zero-
cost load-distribution system – DNS round-robin. DNS
requests are distributed over several IP addresses by
writing a list of host records with identical names into a
DNS domain. Each time a request is made for a particular
name the DNS server responds with the next address in
the list until the last address is reached when the server
resumes at the beginning of the list. At CERN the primary
advantage of DNS round robin is that it is straightforward
to integrate into the existing DNS architecture. An
additional benefit of DNS round-robin load-distribution is
that its operation is independent of the network
architecture thereby operating with a low overhead.

The disadvantage of the DNS round robin system is
that it is unaware of the state or reachability of the
published nodes – it cannot perform intelligent failover.

In an ideal solution, providing failover, the DNS system
would have to allow for the immediate update
(withdrawal and addition) of DNS records. Clearly this is
a problem to a DNS-based failover system as it would
effectively take the TTL time to withdraw a published
device from service.

At the network level there are primarily two different
approaches to load-balancing. Windows 2003 Server
Network Load Balancing (NLB) is a useful method where
network load is the metric used to make packet
forwarding decisions. The advantage of NLB is that it is a
turnkey solution for building small clusters with network
state awareness. The disadvantages of Windows NLB are
that it is proprietary, has limited scalability beyond a
single Ethernet segment and IP subnet and is not
application aware.

The second method is layer 4 switching of which
dedicated examples are Cisco’s CSS and the open source
Linux Virtual Server (LVS). Layer 4 switching
functionality is also available on enterprise multi-layer
switches (Cisco 6500 and Enterasys Xpedition). A layer 4
switch hides a cluster of application IP addresses behind a
single IP address. The single IP address is then published
in DNS and all clients send packets to that address. The
router then applies administrator configured tests in order
to choose the best destination to which it should forward
packets. The disadvantages of this approach are: the tests
are rather simplistic (e.g. a ping test or URL response
test), the router itself becomes a single point of failure
thereby passing the challenge of high-availability to the
router manufacturer and all the devices of the cluster must
belong to a directly connected subnet. For a large campus
network layer 4 switches would be an expensive
inflexible solution to the problem of load balancing. The
actual throughput of such a system will not scale – ideally
for a load-distribution system spreading the load over
several switches has obvious advantages.

Having concluded that hardware based load-balancing
products were neither adequate for CERN’s needs nor
appropriate for its network architecture it was decided to
reconsider DNS as a medium for managing high-
availability applications. The first part of this paper
describes how instantaneous DNS updates can be used to
operate high availability services. The second part
describes an arbitration process within a large cluster of
machines to select a small group of machines to be placed
in service using Dynamic DNS updates (DDNS). The
combination of the two techniques allows for a simple
form of application load balancing.

PUBLICATION OF SERVICES IN DNS
For reasons explained above it appears impractical to

publish services in DNS while it is required to be able to
change records frequently. Efficient resource management
(both host and network) has always been a major goal in
DNS architecture. It is clear that frequent updates of large
zones consume server resources while large zones also
increase the server request rate. Both the distribution via

delegation (see below) and the use of caching requests for
the duration of a configured TTL are used to decrease the
request rate to a DNS server.

Name space segmentation is one of the reasons for the
success of DNS. The ability to segment the name space is
called delegation – the administrator has the possibility to
create sub-domains of domains. A sub-domain may be
realized in two ways: remote delegation to a service
manager’s authoritative DNS server or delegation to local
sub-domain. The first option was initially used at CERN.
Operational complexity made the solution difficult to
provide a reliable end-to-end service especially if support
is required for internal and external network views. In
practical terms, multiple views are unavoidable when the
use of unique SOA and NS records in a particular view
are required. The second option is desirable as it
eliminates duplication of effort, simplifies the support
process and scales easily to multiple views.

The operational model is simple. Services are mapped
directly onto sub-domains. For example the interactive
service LXPLUS is a sub-domain lxplus.cern.ch. This
model has two very convenient points – the sub-domain
has its own unique properties such as TTL and resource
records (RR) while allowing the updates to be performed
independently of the parent domain.

Basic load balancing is possible with DNS round-robin.
It is enabled by writing multiple blank host records into a
particular zone. Intelligent load-balancing and failover
require an additional monitoring system (arbiter – see
below) to add and withdraw host records when required.
To provide simple failover the arbiter writes a single
blank host record in the zone. On failure of the node it
updates the host record with a reachable node. A load-
balancing cluster writes multiple records to the zone
monitoring the state of each node in the cluster and
updating the records as necessary.

In order to centralize DNS updates of a sub-domain the
service manager needs a way to notify the central name
service of his changes. Again, there are (at least) two
ways to approach this. The first way is to allow the
existing system to access multiple data sources to
construct the delegated zones. The problem with this
method is that a common signalling system is required
while needing to agree a standardization of the data
source. When using views it is necessary to have all the
views on a single master server otherwise a signal has to
be sent for each view. CERN uses multiple views in the
DNS to help in the logical partitioning of the network. A
zone describes a sub-domain in a particular view. The
architecture of today’s DNS defines a master server as the
source of the zone data whereas a slave is a name server
which contains a copy of the zone data originated from
the master (primary and secondary servers have no
meaning). Slave servers may or may not be authoritative
in a zone – it is simply the NS records and the SOA which
denote the authoritative servers in the zone.

The database and signalling method has been used at
CERN successfully with larger zones (a few thousand
entries). However, the combined process was found to be

too slow for frequently updated services and one may also
note that additional points of failure are present in the
system.

DYNAMIC DNS SERVICE MODEL
Continuing the discussion above the second method is

to use DDNS update which is well suited to small
frequently changed zones.

Fortunately DNS has been continuously evolving over
the years and the DDNS standard recognises the need to
make DNS more accessible by allowing RPC incremental
updates of DNS records. To further reduce the
consumption of resources the Incremental Zone transfer
(IXFR) mechanism allows the incremental update of
records between the master and its slaves.

SNMP DynDNS

DNS ServerLoad Balancing
Arbiter

node1: metric=24
node2: metric=48
node3: metric=35
node4: metric=27

Application
Cluster

2 best nodes for
application.cern.ch:

node1
node4

`
Q: What is the IP address of

application.cern.ch ?

A: application.cern.ch
resolves to:

node4.cern.ch
node1.cern.ch

Connecting to
node4.cern.ch

Finally, the Transaction Signature standard (TSIG) can
be used for authentication of DDNS update requests to the
master. When running multiple views TSIG keys are
essential to authenticate and access the various views
available on the master server to which the updates are
applied. The service managers have pairs of TSIG keys,
one for each view, and those are used to authenticate him
to any of his zones.

At CERN the TTL of all DDNS zones is set at 60
seconds, a value appropriate for the desired service
failover time. The effective convergence failover time
will be a maximum of TTL + arbiter (see below) poll
interval (N.B. caching can be disabled by setting the
TTL=0). Updates made to the master are propagated
instantly to the slaves via IXFR. It was found that when
running IXFR and DDNS the administrator must pay
particular attention to the journal size of each zone – if the
journal size reaches the file size limit of the server
operating system the server will corrupt the journal and
consume very large amounts of CPU – setting the journal-
size at 10 MB has made a stable system. In situations
where very high query rates are a concern it would be
necessary to study the impact of journal-size on the reply
saturation rate.

APPLICATION LOAD BALANCING
SYSTEM

In the event of node failure DNS round robin is not
sufficient because unreachable nodes are not withdrawn
automatically. Instead a more complex DNS record
update system is required.

A diagram of the load balancing system is shown in
Figure 1. It consists of 3 main components: application
cluster nodes, arbiter and the DNS. The text boxes outline
the most important processes happening in the cluster.
The purpose of the arbiter is to collect metric values from
all nodes in the application cluster, select the best
candidates and update the DNS. Following an update
when a client asks the DNS to resolve the hostname it will

The following definitions are helpful to

be referred to one of the best candidates.

 describe the
ar

he application cluster

Figure 1 – Overview of the load balancing system

bitration process in detail:
N number of all nodes in t

B configurable number of best candidates that will
resolve behind the DNS alias

R d positive non-zero number of nodes that returne
metric value within time-out interval

THE ARBITER
The arbitration ore of the whole

sy

application

• t candidates following certain criteria

king part in the load balancing must report
its

server process is the c
stem. It runs on a separate server machine and it

periodically performs the following subtasks:
• Collects the metric values from the

cluster nodes
Selects the bes

• Updates the central DNS records using DDNS

Data Collection and Selection of the Best
Candidates

Each node ta
 state to the arbiter server. This reporting process is

controlled by the server itself which periodically polls the
information from the nodes over SNMP. The server issues

SNMP get calls and queries sequentially each node in the
cluster. The interval between two scans of all nodes in the
cluster is configurable (however, DNS updates are made
at most once per minute). The value returned by the nodes
is an integer number calculated individually by each node
(see later section about metrics). Only positive
values (> 0) hat were returned by the hos s within a time-
out interval (default 5 seconds) are considered, the nodes
that reply create the R set.

Once the arbiter has quer

t t

ied all nodes in the application
cl

 applied

uster it selects the best B candidates from the R set.
Normally, B is a subset or equal to R, but if a serious
problem affecting almost the whole cluster arises the
following non-standard situations can occur:

Exceptional Description Solution
state by the system

R < B

Num that

B = R

ber of nodes
replied is smaller
than the number of
best candidates that
should be resolved
by the DNS alias.

R = 0

le System returns There were no usab
replies from any of
the nodes in the
application cluster.

random B nodes
from the group
of N.

While the a c nfiguration
de

andidates have been selected, the arbiter
up

DNS could be
ea

Arbiters
ected against serious

fa

APPLICATION CLUSTER NODES
 c the

 information from the cluster nodes

bed above, the handling of the mentioned
M

clude in
th

value
 return a

Sy the
m

whether the following daemons are listening

• user/ path is

•
in is present (if yes,

A is not
fu

ssessment indicators that are considered by the
m

pplication load balan ing co
scribed above is most commonly used, the system also

supports a simpler round robin mechanism where SNMP
is replaced by ICMP ping. It then selects B nodes
sequentially (if configured it will only consider those that
replied to ping) from the group of N, rotating over N,
allowing all nodes to participate in the load sharing.

DNS Updates
Once the best c
dates the DNS for the given zone. This is done by

Net::DNS Perl class using TSIG keys.
The actual sub process that updates the
sily externalized (i.e. provided by a separate binary)

such that it can be performed outside of the arbitration
process. This may be useful for allowing integration with
site specific requirements (e.g. databases such as Oracle
or even LDAP).

Active and Standby
The arbitration server is prot
ilures by a very simple active and standby design. There

are 2 machines running the same arbiter daemon – active
and standby and they both poll for the metric values from
all nodes in all clusters via SNMP and both select the best
candidates. Then, under normal operations, only the
active server triggers the updates on the DNS. Since the
machine where the active process runs is also a web
server, it updates a local heartbeat file which is
periodically fetched over HTTP and checked by the
process on the standby server. If the time of the last
update of the heartbeat file differs from the current time
by more than 10 minutes or if the file is not accessible,

the standby server starts to trigger DDNS updates. We are
aware that this failover mechanism is quite simple and
could be improved.

A
sa

luster is defined as a group of nodes that offer
me functionality or run the same application. The

application (i.e. service) is accessed not by connecting to
each individual node but via client DNS resolution of the
cluster DNS alias (a zone).

SNMP Daemon
The arbiter gathers
either by using SNMP or ICMP ping. If application load
balancing is required each cluster node must run a local
SNMP daemon configured to allow SNMP get calls to a
private MIB OID. When the OID is called SNMP
launches a standard binary (installed in bulk on many
machines via an RPM package) which examines the
operating state of its host and returns a metric value.

Metric
As descri
IB OID is passed to the external program which is in

our system called the load balancing metric. This small C
binary examines the actual running conditions of the
system on the node, translates that into an integer number
and it prints its value on the standard output which is then
passed to the arbiter over SNMP. The purpose of this
metric program is to reflect as much as possible the
system load on the node such that users can be offered the
set of least loaded nodes at any instant in time.

The list of items that the metric binary could in
e calculation is configurable. Depending on their return

value, they can be divided into 2 groups:
• System checks that return a Boolean
• System assessment indicators that (usually)

positive number (e.g. system load from uptime)
stem checks currently available to calculate

etric are:
• Check

(uses /proc/net/tcp and /proc/net/tcp6) on their
respective ports: FTP daemon (port 21), SSH
daemon (port 22), WWW daemon (port 80),
GridFTP daemon (port 2811)
Check whether the /afs/cern.ch/
accessible (indicates AFS problems on a node)?
Check whether /tmp is not full ?

• Check whether the file /etc/nolog
the node is closed for interactive user logins)?

s all these checks return a Boolean value, if one
lfilled, the program exits immediately with a negative

value which means that the node is marked as a bad
candidate.

System a
etric when evaluating the running conditions on the

node are: system CPU load (the most important factor),
number of users currently logged in, swapping activity,

number of running X sessions (understands KDE and
GNOME sessions only). It is the return values of these
indicators that compose the final metric formula which
quantifies the load of the system. The formula is CERN
specific, it has been found empirically and its discussion
is beyond the scope of this paper.

From the implementation point of

Figure 2 – Number of times nodes in cluster were chosen

view, in many cases
de

OPERATIONAL EXAMPLES
The ab used at

C

balancing at CERN is the
in

of

lication load balancing system

nd robin is that it has no
no

tw

CONCLUSION
Using DDNS ble to automate

in

und Open Source tools and as
su

ACKNOWLEDGEMENTS
For thei o the

de

scribed above, the /proc pseudo GNU/Linux filesystem
serves as the source of the information. The disadvantage
of this method is that not only it makes the metric binary
GNU/Linux kernel specific but also the above described
Boolean checks are often performed in parallel with the
CERN central monitoring system (LEMON). This
duplication is unnecessary and a new binary is being
deployed which integrates with node LEMON sensors.
However, this approach introduces latency into the
detection of failures.

ove described load balancing system is
ERN by many key services. These services differ not

only in scale and purpose but also in the way how they
benefit from our system. The following are the most
important applications:

Interactive Login Service
The main client of the load
teractive service called LXPLUS (LinuX based Public

Login UNIX Service). It allows users to connect via SSH
to one of many (O(10)) lxplusXXX.cern.ch nodes and
work interactively. In this usage pattern, users with their
SSH clients resolve lxplus.cern.ch DNS alias once,
connect to the offered IP address and stay connected to
that node until they log out.

The bar graph in the Figure 2 shows a statistical record
 the selection of each node in the LXPLUS cluster for

the period of 30 days. The abscissa indicates the hostname
and the ordinate displays the number of times the given
node was selected as part of the cluster DNS alias
(lxplus.cern.ch). The bar graph displays two bars for each
node. The dark bar is for the first 15 days, the light bar is
for the second 15 days. It is clear from the variation in the

height of the bars that the system is not distributing
sessions fairly. However, over two 15 day periods a single
machine was not preferred over another which indicates
that there is not a systematic selection problem.

Stateless Applications
The simplest use of the app
is one where the state of the connection is not relevant in
processing transactions on the server side because any
subsequent connections will resolve the IP address of any
of the nodes published under the DNS alias name (e.g. a
web server providing static content or a (Grid)FTP
server). The application load balancing system ensures
that the subset of resolvable IP addresses always points to
the least loaded nodes and then the DNS round robin will
ensure load distribution from the client side.

State Aware Applications
The problem with DNS rou
tion of the state of the application. Therefore the ideal

server process of the state aware application should tell
the client to make all following connections to a specific
IP address or host name effectively substituting the
registered cluster DNS alias for one of its member nodes.

Continuing with the example of a web service there are
o ways of solving this problem: the first is to use the

ServerName directive of the Apache daemon while the
second method is to write the application to substitute the
server name into all referenced URLs embedded in the
returned HTML.

switching it is possi
telligent load-balancing and failover systems ranging

from a two node active/standby simple failover system
using ICMP ping to a complex application cluster system
containing many nodes. Common to both systems is the
need for an arbiter, which uses metric values derived from
operating system or application level parameters to
evaluate whether a node should be included or excluded
in a list of available nodes. The arbiter then updates the
published list of nodes in DNS withdrawing or adding
cluster nodes as required.

The system is built aro

0

100

200

300

400

500

600

700

lx
pl

us
00

1

lx
pl

us
00

3

lx
pl

us
00

5

lx
pl

us
00

7

lx
pl

us
01

0

lx
pl

us
01

2

lx
pl

us
01

5

lx
pl

us
01

7

lx
pl

us
01

9

lx
pl

us
06

3

lx
pl

us
06

6

lx
pl

us
06

8

lx
pl

us
07

0

lx
pl

us
07

3

ch is sufficiently general to be easily adapted by
institutions other than CERN.

r direct or indirect contribution t
velopment of this load balancing system, we would like

to thank (in time order of their contribution): Dan Pop,
Martin Murth, Solene Quelard, Thorsten Kleinwort,
Teemu Sidoroff and Tim Bell. On the DNS side
Alexander Karlov performed the initial evaluation of the
integration of DDNS into the existing CERN DNS
infrastructure.

	DNS LOAD BALANCING AND FAILOVER MECHANISM AT CERN
	INTRODUCTION
	PUBLICATION OF SERVICES IN DNS
	DYNAMIC DNS SERVICE MODEL
	APPLICATION LOAD BALANCING SYSTEM
	THE ARBITER
	Data Collection and Selection of the Best Candidates
	DNS Updates
	Active and Standby Arbiters

	APPLICATION CLUSTER NODES
	SNMP Daemon
	Metric

	OPERATIONAL EXAMPLES
	Interactive Login Service
	Stateless Applications
	State Aware Applications

	CONCLUSION
	ACKNOWLEDGEMENTS

