

A PARALLEL COMPUTING FRAMEWORK AND A MODULAR
COLLABORATIVE CFD WORKBENCH IN JAVA

ABSTRACT
The aim of this paper is to give means for writing parallel
programs and to transform sequential/shared memory
programs into distributed programs, in an object-oriented
environment and also to develop a parallel CFD
workbench utilizing the framework. In this approach, the
programmer controls the distribution of programs through
control and data distribution. The authors have defined
and implemented a parallel framework, including the
expression of object distributions, and the transformations
required to run a parallel program in a distributed
environment. The authors provide programmers with a
unified way to express parallelism and distribution by the
use of collections storing active and passive objects. The
distribution of classes/packages leads to the distribution
of their elements and therefore to the generation of
distributed programs. The authors have developed a full
prototype to write parallel programs and to transform
those programs into distributed programs with a host of
about 12 functions. This prototype has been implemented
with the Java language, and does not require any language
extensions or modifications to the standard Java
environment. The parallel program is utilized by
developing a CFD workbench equipped with high end
FEM unstructured mesh generation and flow solving tools
with an easy-to-use GUI implemented entirely on the
parallel framework.

KEY WORDS
Java, parallel computing, unstructured mesh, CFD,
computational efficiency

1. Introduction

The chief aim here is to provide a few tracks in the use
and development of an environment or more specifically a
programming framework for the development of CFD
engineering software with parallel approaches. Many
authors have shown the strength of the approach in
different fields of mechanics, including parallel and/or
CFD computations: e.g. a study of a transient model of
fluid mechanics fully coupled to an electrochemistry
model in [1] , some object-oriented techniques dedicated
to CFD in[2], a finite element model for modeling heat
and mass transfer using the Diffpack library in [3], an
arbitrary Lagrangian-Eulerian stabilized formulation for
hydrodynamics with shock capturing techniques in [4] , a

use of the PVM library to parallelize explicit
computations in structural dynamics in [5] , a general
framework for managing parallel simulations based on
domain decomposition methods in [6], etc. Following a
similar path, the authors have developed approaches to
realize the design of finite element formulations and
corresponding numerical codes by the way of symbolic
concepts ([7, 8]). In [9], the problem of the utilization of
Java for numerical computation in the industrial real life
problems is raised up, and no definitive response is
brought probably because of lack of experiments in the
domain. One aim of the present work is to give an
example of large scale coding in java significantly more
complex than sequential programming. The idea of this
work is to develop a pure JAVA framework for finite
elements or finite volume parallel computations. In this
paper, the authors would like to describe some aspects of
developing an application in Java for domain
decomposition in CFD with examples and proves of data
convergence and comparative speedups taking into
account another problem of some computational
complexity all along using the authors’ parallel
framework. To begin, the authors show some pure
performance comparison tests between C/C++ and JAVA
on a classical matrix/vector product and data convergence
with a program written for calculating lift and drag over a
NACA -0012 aerofoil (using Lifting-Line theory). At
last, the authors show a tentative development for an
overlapping domain decomposition method for the
Navier-Stokes problem implemented entirely on the
framework to illustrate the capabilities of the framework.
The library named JPE includes an easy and intuitive
programming model based on distributed threads; object-
based, message-passing APIs; and distributable data
collection.

2. Computational Problems and the
Approach

Roughly speaking, we distinguish the Java programming
language from the Java Virtual Machine (JVM). The JVM
is an interpreter that executes the program compiled to
Java byte codes. The main consequence is that a program
compiled on a system can be run on all systems. This very
attractive aspect could hide a major drawback especially
in CFD computation: the efficiency. Most computations

in mechanics involve a large number of scalar products
(elemental contributions computation, Crout reduction in
direct linear systems solvers, matrix/vector products in
iterative linear system solvers). Here, the same code has
been tested. (Java has a C++ syntax, only memory
allocation) for computation of matrix/vector products,
with a direct addressing and with an indirect addressing,
i.e. code respectively corresponding to v[j] = A[i][j] * x[j]
and v[j] = A[i][j] * x[table[j]], where table[] enables us to
address the elements in the array x[] which is often
needed for multithreaded applications. It is worth noting
that the code in C/C++ and JAVA are exactly the same.
Various number of matrix/vector products are done, for
various sizes of matrices. Results are shown on Figure 1.
Products vs. (tc / tj*100) as a horizontal bar diagram.

Results are similar on different platforms (Windows XP x
Tru 64 Dec-Unix on a 4 processors EV6 – Version 1.3.0
and 1.4.2 version for JAVA virtual machine and
J2SDK1.4.2) and shows roughly speaking that Java is
from 72% to 85% within the C compiled code with
maximal optimization options for direct memory access,
and from 65% to 82% with indirect addressing. It should
be noted that with reference to Amdahl’s law of speedup
in parallel systems, the best results are obtained for large
sized matrices. The drawn conclusion is that good
performances rates can be achieved for computational
tools in Java using threads. This efficiency is acceptable
to develop tools for the fast design of numerical
algorithms for large applications on shared/distributed
memory systems.

Figure 1: Comparison between C/C++ and Java code for matrix/vector multiplications using threads on single processor
systems.

3. Parallel Algorithm and Approach

3.1 The Parallel Framework

Looking at MPI which has been accepted as the
standard for parallel computing on distributed
platforms in C, the library comes with similar
functions with almost similar syntax as well as
functions. The use of non-blocking communication
alleviates the need for buffering since a sending
process may progress after it has posted a send.
Therefore the constraints of safe programming can be
relaxed. However some amount of storage is
consumed by a pending communication. At a
minimum the communication subsystem needs to

copy the parameters of a posted send or receive
before the call returns. If this storage is exhausted
then a call that posts a new communication will fail
since post send or post receive calls are not allowed
to block. A high quality implementation will
consume only a fixed amount of storage per posted
non-blocking communication thus supporting a large
number of pending communications. The failure of a
parallel program that exceeds the bounds on the
number of pending non-blocking communications
like the failure of a sequential program that exceeds
the bound on stack size should be seen as a
pathological case due either to a pathological
program or a pathological implementation. Table1
lists a host of the available library functions.

Table 1: Method Specifications

int JPE_Init(int num_procs,String
mother_machine)

The first and foremost of the
functions that has to be called to
initialize the framework. Return value
is 1 if successful else returns error
code(0 to 7 except 1)

Is highly dependent on the machine
identifier.

int JPE_getID(void) This method returns the local id of
the machine i.e. the integer id of the
current processor.

Often used in identifying processors using ids
and not machine id.

int JPE_Send(datatype[] data,int
size,int hid)

This method can be used to send data
to another processor with id hid.
(Overloaded)

The hid parameter must be correct to ensure
data transfer. Available as both blocking and
non-blocking.

nt JPE_Recv(datatype[] data,int
size,int hid)

This method can be used to receive
data from another processor with id
hid.

The hid parameter must be correct to ensure
data transfer. Available as both blocking and
non-blocking.

int JPE_Bcast(datatype[] data,int size This method can be used to send data
to all another processors in the
connection. Returns 1 if ok else 0-7
except 1 in case of errors.

Comes in two formats –blocking and non-
blocking. Available as both blocking and
non-blocking.

int JPE_iAllReduce(int data,int
operatio

This method can be used to
accumulate the results obtained as a
result of certain computations in each
processor by the operation parameter
and saved in each processor.

Similar implementations exist for short,
unsigned short, unsigned int ,long ,unsigned
long ,float ,unsigned float ,double, unsigned
double as well as unsigned long double as
well as for classes with applicable fields.

int JPE_iReduce(int data,int
operation,int hid)

This method can be used to
accumulate the results obtained as a
result of certain computations in each
processor by the operation parameter
and saved in the target processor
given by the parameter hid->”host id
“ to receive final value.

Similar implementations exist for short,
unsigned short, unsigned int ,long ,unsigned
long ,float ,unsigned float ,double, unsigned
double as well as unsigned long double as
well as for classes with applicable fields.
Available as both blocking and non-blocking.

int JPE_Finalise() Returns 1 if ok else returns -1. Mandatory method. Must be called at the end
of every program to finalise socket
connection, memory allocation,mem_buf
allocation flags etc.

4. Results

4.1 Data Convergence

Here to verify the convergence of the local and global
solutions and to yield a satisfactory result that satisfies
both advantages of time and space complexity, the
authors have considered the computation of drag and lift
(along with pressure) distribution on a NACA-0012
aerofoil at a given angle of attack, free-stream conditions

etc. making use of the thin aerofoil theory. Figure 1 shows
the plot of lift coefficient along a NACA-0012 aerofoil
for various numbers of processors against the serial code.
The plot indicates the excellent converging behavior of
the parallel code. As said before the library takes care of
the data transfer so that round –off errors as well as data
encryption errors are avoided ensuring exact data transfer.
Again, system transparency enables the similar code to be
executed with similar proficiency on any platform
irrespective of the o.s implementations.

Figure 1: Comparison between data generated between serial and processors (p) =2, 4 and 6 parallel algorithm.

Figure 2: Computational efficiency (Speedup) achieved in case of time dependent solutions over increasing number of

processors

4.2 Speed Up

In Java, parallel programming is embedded into the
language. The key point of this kind of programming is
the class JDC present in the package JPE. The question is
then to check the performance of this class in the context
of a CFD code. The test done here is to parallelize an

unstructured mesh generation algorithm: the code being
tested on Linux systems-Intel-80386 Pentium processor
s.Figure 2 show the speedup achieved over number of
processors for a mesh size of 160,000 triangular elements.
The time for execution varies to a very little extent from
platform to platform due to different implementations of
system calls.

Figure 3: Screenshot showing unstructured mesh generated around an arbitrary body. (2-D)

4.3 The CFD Workbench

The workbench was written in Java and the GUI was
implemented using the swing utility. The look and feel is
set to platform default look by the Java code piece:
’UIManager.SetLookandFeel(default)’. The workbench
provides users with a canvas to draw arbitrary geometries
as well as select certain standard features. The mesh
button displays a dialog which prompts the user to select
mesh fineness. Solve button displays a dialog prompting
the equation to be solved and tolerance factors to be
considers. The top-level menus include options to display
pressure plots, streamlines and as well as vibration plots
along time. The mesh generation is achieved by domain-
decomposing the entire flow domain into sub-domains
and distributing the computational load among the
participating processors. The method presented in this
paper is geometry-based, in that the geometrical data is us

Figure 4: Mesh generated by domain-decomposition
around an arbitrary body. (2-D).Boundary lines indicate
load-balancing across 4 processors by geometry
distribution and inter-zonal boundaries

Figure 5: Manager–Worker model to distribute computational load.

5 Conclusions

The central point of this project is the development of a
parallel framework for developing FEM components
,FEM discretizations , adaptivity and multi-grid solvers
and their realization in a CAD software package as
shown, which directly includes tools for parallelism and
hardware-adapted high-performance in low level kernel
routines; completely platform independent. It is the
special goal in this project to realize and to optimize the
algorithmic concepts used internally in the environment
for specific computers (Sun Solaris, Linux/Unix) and to
adapt the mathematical components to complex
configurations. In this paper we have presented an
expressive parallel programming model implemented by a
framework in the Java language. We have not made any
extension to the language. The synchronization model is
very simple and will be extended in order to enlarge the
application domain of our programming model.

References

[1] A. P. Peskin and G. R. Hardin, An object-oriented
approach to general purpose fluid dynamics software,
Computers & Chemical Engineering, Vol. 20, 1996, pp.
1043-1058.

[2] O. Munthe and H. P. Langtangen, Finite elements and
object-oriented implementation techniques in
computational fluid dynamics, Computer Methods
Applied Mechanics and Engineering, Vol. 190, 2000, pp.
865-888.
[3] S.-H. Sun and T. R. Marrero, An object-oriented
programming approach for heat and mass transfer related

analyses, Computers & Chemical Engineering, Vol. 22,
1998, pp. 1381-1385.

[4] D. S. Kershaw, M. K. Prasad, M. J. Shaw and J. L.
Milovich, 3D element Unstructured mesh ALE
hydrodynamics with the upwind discontinuous Finite
element method, Computer Methods in Applied
Mechanics and Engineering, Vol. 158, 1998, pp. 81-116.

[5] P. Krysl and T. Belytschko, Object-oriented
parallelization of explicit structural dynamics with PVM,
Computers & Structures, Vol. 66,1998, pp. 259-273.

[6] A. S. Charao, Multiprogrammation parallèle générique
des méthodes de decomposition de domaine, PhD thesis
report, Institut National Polytechnique deGrenoble, 2001.

[7] D. Eyheramendy, An object-oriented hybrid
Symbolic/Numerical Approach for the Development of
Finite Element Codes, Finite Element Analysis and
Design, vol. 36 (2000) pp. 315-334.

[8] D. Eyheramendy and Th. Zimmermann, Object-
oriented Finite elements: IV.Application of symbolic
derivations and automatic programming to nonlinear
formulations, Computer Methods in Applied Mechanics
and Engineering, vol. 190 n° 22-23 (2001) pp. 2729-2751.

[9] M. Ginsberg, J. Hauser, J. E. Moreira, R. Morgan, J.
C. Parsons and T. J. Wielenga, Panel session: future
directions and challenges for Javaimplementations of
numeric-intensive industrial applications, Advances in
Engineering Software, Vol. 31,2000, pp. 743-751.

