Managing Small Files in Mass Storage Systems using Virtual Volumes

Esther Accién, Manuel Delfino*
Port d’Informacié Cientifica, Spain

Emilio Hernandez'
Universidad Simoén Bolivar, Venezuela

Andreu Pacheco?
Institut de Fisica d’Altes Energies, Spain

Abstract

We present a storage middleware, called ViVo (Virtual
Volumes), for grouping files into volumes transparently in
a Mass Storage System (MSS). When a user requests a file
through any file transfer service, such as ftp or http, the
ViVo middleware is triggered. ViVo reads the volume from
the MSS and mounts it in such a way that the file service
daemon can read the file and serve the user request. Stor-
ing files in volumes, rather than storing them directly, is
important for the efficient use of the MSS, especially if it
has a long access latency. This is the case of most MSS sys-
tems, such as tape robots, in which the requests are queued
until a tape drive is available. Data access efficiency can
be increased by reclustering files into different volumes for
improving locality of reference.

INTRODUCTION

Access to large data repositories in distributed environ-
ments such as a Grid, poses problems related to efficient
data storage and transmission. In particular, efficient hi-
erarchical storage management of a large amount of small
size files continues to be a challenge. Storing such files
directly on tape-based tertiary storage leads to extremely
low operational efficiencies. Commercial tape virtualiza-
tion products are few, expensive and only proven in main-
frame environments. Asking the users to deal with the
problem by bundling their files leads to a plethora of so-
lutions with high maintenance costs. Part of the problem
is that data processing environments have evolved towards
the illusion of an infinite file store with a subdirectory struc-
ture, eliminating the concept of a volume, be it physical or
logical.

The file size is an important factor for achieving a good
throughput from “nearline” platforms such as tape based
MSS. The reason is that there is normally a long delay to
start transmission, due to queueing and mechanical tape ac-
cess and placement in drives. There have been studies that
relate the file size to tape drive efficiency, which conclude
that small files dramatically downgrade the efficiency of
tape usage [1]. The main problem is the initial delay for
the actual file read and for this reason we may expect a
similar behaviour on any system with similar characteris-
tics, that is a system in which queueing time dominates the

* {esthera,delfino } @pic.es
t emilio@usb.ve
¥ pacheco@ifae.es

data retrieval.

There are file migration systems oriented to MSS sys-
tems, such as Castor [2], Enstore [3] and HPSS [4], among
others. These systems are typically designed for moving
files across a storage hierarchy on request. When used with
large collections of small files the access to the drives of
the back-end becomes congested, generating long query
queues and affecting other MSS users. The user manuals
of these systems invariably suggest the use of tar archives
when many small files are used. There are also client-
server systems for accessing distributed file systems, such
as SRB [5] and GFAL [6] that need the applications to be
linked with special libraries for remote file access.

We intend to develop mechanisms for transparent vol-
ume creation and access that do not need to modify the ap-
plications at all, not even recompile them or relink them
with a special wrapper library. We propose a two-level
storage and transfer mechanism, useful for MSS as well
as distributed systems such as Data Grids. Data movement
at the first level is made on a file basis, while data move-
ment at the second level is made on a volume basis, where
a volume is a collection of files. In this paper we present
a mechanism that follows this scheme under a specific but
commonly used producer-consumer scheme.

The rest of this article is divided as follows. First, the
data flow model is described, as well as the mechanism for
volume creation and manipulation. In second place, some
implementation details are explained. Finally, there is a
summary of the results and the conclusions.

DATA FLOW MODEL

The small file problem frequently arises in projects re-
lated to the generation of scientific raw data for later pro-
cessing. Data is normally stored in Mass Storage Systems
(MSS) and distributed for processing, typically through a
grid platform. These projects follow a simple data flow,

such as that displayed in figure 1.
Files
-

Figure 1: Data Flow for Scientific Data Processing

Files

P T—

MSS

The producer is the agent that generates the data to be
processed, typically raw data obtained from measurements
made by specialised devices. The MSS acts as an inter-
mediate agent for data storage, which in the context of

Grids could be a set of storage elements, which use the
GridFTP [7] protocol, probably being each site a front-end
of one or more MSS devices such as tape robots. The con-
sumer is the agent that processes the data, for instance, ap-
plications that make simulations or search for data patterns.
Frequently, these applications generate other files which, in
turn, are stored back in the MSS. Hence, a consumer may
itself be a producer.

The data is processed asynchronously, usually in a batch
fashion. The reading and writing processes can be com-
pletely separated because of the WORM data access model
(Write Once-Read Many). This is important because it sim-
plifies the design; for instance, the cache coherence prob-
lem is not an important issue.

We propose a mechanism for grouping files into volumes
before being migrated to an MSS. Inversely, when a file
is requested, the volume is read and the file is accessed
from the mounted volume transparently and handed over to
the client. This mechanism is transparently placed between
the file server and the MSS, and works with any kind of
file service, such as FTP, GridFTP, Web Server, etc. This
scheme is particularly suitable for those environments in
which large amounts of data files are handled and the usage
model is basically WORM, with the data flow similar to
that described in the next section.

The general data flow scheme, described in figure 1, is
completed with additional components that introduce the
volume generation and manipulation. The data flow de-
rived from this new scenario is described in figure 2

Volumes . Files
Broker E—— Retailer E—— Consumer

ey
Reclustering

Figure 2: Data Flow for Scientific Data Processing in ViVo

The producer generates the data with a logical file name
(LFN) structure. The applications (consumers) refer to data
files using the same logical file names. The data is stored
in brokers, which typically manage MSS, in the form of
volumes. The brokers are supposed to store large amounts
of data, in the order of terabytes or petabytes. The physical
volumes are created in the broker side, along the file trans-
fer process, but they could eventually be created by the pro-
ducer, with the support of the broker. When the data is go-
ing to be processed, the consumers access the files through
a retailer.

Files are transparently stored in volumes and the MSS
do not know the internal structure of such volumes. These
volumes are virtual in the sense that they do not have any
locality attribute and hence they can have several physical

instances or replicas. The transfer unit between a broker
and a retailer is always a volume, the transfer unit between
a retailer and a client is always a file. Files have a physical
name that may contain information about the virtual vol-
ume in which they reside. Files also have a logical name,
associated to the logical structure and it is the only name
the applications know.

The volume size is defined by the broker, according to
efficiency criteria. Data files can be regrouped into differ-
ent volume sets, according to the access pattern exhibited
by the applications, in order to maximise locality of ref-
erence. This scheme is intended to be efficient for data
reading, while penalising data writing.

The retailer could be located at the broker’s side, at the
client’s side or in an independent location. The retailer
could also be an NFS server, in which the volumes are
mounted once transferred from the broker. This could be
helpful in a processor farm. In the context of Grids a re-
tailer could be a storage element and the clients could exe-
cute a GridFTP from the retailer.

The reclustering process could be implemented for in-
crementing the access efficiency. This could be a broker’s
service, however it should be executed according to appli-
cations needs.

IMPLEMENTATION

Transparency is achieved with the help of objects we
call VMU (ViVo Mapping Units). These objects can be in-
stalled either in the retailer, for triggering a volume transfer,
or in the client, for triggering a file transfer. It could also
be installed in both systems. The VMUSs are used for ex-
ecuting data transfers on demand. A retailer VMU would
contain:

e Component 1: A data structure for mapping User-
Provided File Names (UserFN) to a pair (Volume,
File) in the broker. The UserFN is assigned by the data
producer during the data upload. The pair (Volume,
File) could be obtained from an internal file name,
that we call a ViVo File Name (ViVoFN). This associ-
ation may be implemented with the help of directory
systems such as LDAP or RLS (the Replica Location
Service) in case Vivo is implemented on a Grid, or
simply as a file directory with symbolic link associa-
tions. For very regular file structures, the association
can be implemented via lexical rules.

e Component 2: A procedure for managing the cache,
which is invoked every time the data service tries to
access a file. This procedure performs the neces-
sary operations for mapping the UserFN to a ViVoFN,
transferring the volumes and extracting the files. Al-
ternatively, the transferred volumes can be mounted,
avoiding the time-consuming process of extracting the
files. This component can be implemented with the
help of an automounter or with the help of a Virtual
File System such as FUSE [8].

It is important to emphasise that an automounter needs
the files to be located under a directory used as the mount
point. In order to transparently trigger the script that
transfers the volume, the path describing the ViVoFN
should consist of a prefix that corresponds to the mount
point and a suffix that corresponds to the rest of the
path describing the file. For instance, the ViVoFN
could be ”/ViVo/MyProject/Volume0001/File0027”, be-
ing the mount point ”/ViVo/MyProject/Volume001” and
the filename “File00027”. The UserFN, could be com-
pletely different, for instance, it could be something simi-
lar to ”/ViVo/MyProject/DataSet003/Measurement005.txt”
defined as a symbolic link pointing to the ViVoFN. If we
use a Virtual File System there are more options for es-
tablishing the association between the UserFN and the
ViVoFN. In this case we could use directory systems such
as LDAP.

In our implementation we have chosen the automounter
option because it is a mature technology, used in many
computer installations. An automounter such as amd [9]
can be used for the definition of file systems, which are
mountable through a user-defined script.

I/0 procedures

In this section we describe the basic I/O procedures that
a retailer needs to do in order to be an intermediate agent
between the data repository and the clients or applications.

Reading procedure The Component I is the data
structure that maps UserFN to ViVoFN. The simplest
way this map can be implemented in Unix is a direc-
tory in which each UserFN is a symbolic link to its
correspondent ViVOoFN (initially inexistent). The access
to the UserFN will be processed as an access to its
correspondent ViVoFN, which in turn will trigger the
automounter. The automounter script (component 2) will
copy the volume from the retailer and mount it. Con-
tinuing with the same example, the volume could be an
ISO file named ”/ViVo/MyProject/Volume0O1.iso”.
This volume, once transferred, could be
mounted in ”/Vivo/MyProject/Volume001”.
When the automounter returns, the access to
”/ViVo/MyProject/DataSet003/Measurement005.txt”
will succeed, because it is a symbolic link to a file in the
volume just mounted. The retailer can then transfer the file
to the remote application.

Writing procedure Volume generation can be auto-
mated either at the broker or at the producer side. Let us
suppose the volume creation takes place in the broker, as
the producer sends the files. The producer could choose the
filenames, provided the name space is organised in such a
way that conflicts can not happen. For instance, the broker
could assign different prefixes to every client, i.e. prefixes
such as ”/ViVo/MyProject”, which represents an ”Area” in
which the client can store the files. Only after the creation

of a volume in the broker, the files contained in that volume
are available for reading, through an associated retailer.

Data update As mentioned above, the writing and up-
dating scheme is designed for WORM systems, which is
often suitable for scientific data. The file delete operation
could simply be be implemented by deleting the ViVoFN
reference, although the real data would be kept in the ISO
volume. If the data are written on non-rewritable media,
such as CDs or DVDs, the file cannot be physically re-
moved anyway. If the file needs to be replaced, then it is
added to the next ISO volume and the ViVoFN is changed
for pointing to the new file, leaving the old version of the
file where it originally was. A reclustering process will
physically delete the file.

Reclustering Locality of reference, that is, consecu-
tive access to files in the same volume, can dramatically
improve the average file access time. This means that the
files could be regrouped in different volumes according to
the access pattern. In fact, multiple copies of the data may
coexist for different applications, in the form of different
volume sets. A reclustering process reads the volumes
previously created and, based on new distribution criteria,
rewrite the files on different volumes. The new volumes
can replace the original volumes or be stored additionally
in the MSS.

Volume manipulation It is important to be able to
transfer the volumes as independent objects, not only the
files individually. This is important, for instance, in data
grids, where the replicas are commonly used for improving
performance. In this case, of course, a high level directory
must be implemented and this directory should know about
the existence of the replicas.

RESULTS

We have successfully deployed a combination of com-
mon O/S tools (mkisofs and amd) in order to handle large
numbers of small files in containers, which are large ISO
9660 files. These ISO files are handled through PIC’s
Castor MSS. This scheme is currently in production for
the MAGIC Telescope Project [10] and a Medical Image
Grid project in collaboration with Parc Tauli Hospital [11].
About 15 TB have been stored in some 3500 ISO volume
files.

We have observed that this scheme improves consider-
ably the efficiency of the MSS if the file access pattern pro-
duces a high hit rate per volume. The retrieval of about
20GB of data divided into small files (around 200KB each)
could take in our MSS more than a day, even if a tape drive
is dedicated to the query. The same operation could take a
few minutes if these files are packed in a single ISO vol-
ume, because only one tape access is needed. There exists,
however, a worst-case scenario in which the file access pat-
tern produces many volume retrievals, a condition known

as cache thrashing. This may oblige to recluster files in vol-
umes, according to the file access pattern exhibited by the
applications. Whereas a totally general implementation of
Virtual Volumes would require quite complex coding, the
prototypes presented are optimised for the WORM envi-
ronment often found in scientific data applications.

CONCLUSIONS AND FUTURE WORK

Research has been undertaken to deal with the small file
problem issue at the data centre level. An implementa-
tion of a mechanism termed Virtual Volumes” has been
successfully tested and is in production for two research
projects. This mechanism combines standard operating
system tools such as symbolic links and auto-mounters to-
gether with techniques to represent a volume as a file such
as the ISO 9660 specification. This solution is only suit-
able for WORM (Write Once, Read Many) environments,
which are common in scientific data processing, because
the raw data come from experiments and can not be modi-
fied.

We currently aim at achieving a better integration of this
mechanism with file catalogs used by the projects we sup-
port, as well as monitoring the access patterns for develop-
ing re-clustering techniques of files in volumes.

ACKNOWLEDGMENTS

The Port d’Informacio Cientifica (PIC) is maintained
through a collaboration agreement of DURSI (Generalitat
de Catalunya), CIEMAT (Ministerio de Educacion y Cien-
cia), Universitat Autonoma de Barcelona and IFAE. This
research was supported in part by the Enabling Grids for E-
sciencE project funded by the European Union under con-
tract number INFSO 508833, and by grant FPA2003-00417
of the Ministerio de Educacién y Ciencia, Spain.

REFERENCES

[1] Bernd Panzer-Steindel. Tape storage issues. Report to the
LHC Computing Grid Project Grid Deployment Board, Jan-
uary 2005.

[2] http://castor.web.cern.ch/castor/.
[3] http://www-hppc.fnal.gov/enstore/.
[4] http://www.hpss-collaboration.org/.
[5] http://www.sdsc.edu/srb/.

[6] http://grid-deployment.web.cern.ch/grid-
deployment/gis/GFAL/gfal.3.html.

[71 W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke. Data management and transfer in highperfor-
mance computational grid environments. Parallel Comput-
ing, 2001.

[8] http://fuse.sourceforge.net/.

[9] Erez Zadok. Linux NFS and Automounter Administration.
Sybex, 2001. ISBN: 0-7821-2739-8.

[10] Cortina, J. et al. Technical performance of the MAGIC tele-
scope. In Proceedings 29th Int. Cosmic Ray Conf. (Pune),
pages 101-106, 2005.

[11] Carles Rubies, Josep Fernandez-Bayo, Manuel Delfino,
Emilio Hernandez, Joan Guanyabens, and Andreu Pacheco.
Real medical images for scientific purposes in a grid envi-
ronment. In P. Inchingolo and R. Pocci-Mucelli, editors,
Proceedings of EuroPACS-MIR 2004, 2004.

