CHEP06 - Mumbai / INDIA

Studies with the ATLAS Trigger & Data Acquisition "pre-series" setup

N. Gökhan Ünel (UCI & CERN) on behalf of ATLAS TDAQ community

ATLAS Trigger / DAQ

ATLAS Trigger / DAQ

ATLAS Trigger / DAQ

Pre-series test bed

- 8 racks at Point-1 (10% of final dataflow)
- to exercise the TDAQ before detector integration
- to estimate the quantity and characteristics of TDAQ components

One ROS rack TC rack + horiz. Cooling 12 ROS 48 ROBINS	RolB rack TC rack + horiz. cooling 50% of RolB	One Full L2 rack TDAQ rack 30 HLT PCs	Partial Superv'r rack TDAQ rack 3 HE PCs	One Switch rack TDAQ rack 128-port GEth for L2 +EB	Partial EFIO rack TDAQ rack - 10 HE PC (6 SFI - 2 SFO - 2 DFM)	Partial EF rack TDAQ rack - 12 HLT PCs	Partial ONLINE rack TDAQ rack 4 HLT PC (monitoring) 2 LE PC (control) 1 Central
underground : USA15		surface: S	FileServer				

- •ROS, L2, EFIO and EF racks: one Local File Server, one or more Local Switches
- •Machine Park: Dual Opteron and Xeon nodes, ROS nodes uniprocessor
- •OS issues: Net booted and diskless nodes (localdisks as scratch), runing Scientific Linux, Cern v3.
- •Trigger : Free trigger from L2SV or frequency manually set using LTP

Pre-series test bed

- 8 racks at Point-1 (10% of final dataflow)
- to exercise the TDAQ before detector integration

- ROS, L2, EFIO and EF racks: one Local File Server, one or more Local Switches
- •Machine Park: Dual Opteron and Xeon nodes, ROS nodes uniprocessor
- •OS issues: Net booted and diskless nodes (localdisks as scratch), runing Scientific Linux, Cern v3.
- Trigger : Free trigger from L2SV or frequency manually set using LTP

Pre-series test bed

8 racks at Point-1 (10% of final dataflow)

to exercise the TDAQ before detector integration

- •OS issues: Net booted and diskless nodes (localdisks as scratch), runing Scientific Linux, Cern v3.

ROS & ROBIN basics

- ROBIN cards with 3 s-link fiber ports is the basic readout system (ROS) input unit. A typical ROS will house 4 such cards (4x3 = 12 input channels).
 - ATLAS has ~1600 fiber links, ~150 ROS nodes.
 - ROS sw ensures the parallel processing of 12 input channels

ROS studies

EB studies

#SFIs

LVL2 studies

Combined system -1

• The triggers are generated by the L2SVs driving the system as fast as possible. Stable operation observed even for overdriven conditions.

$$\frac{TS \cdot N_{SFI}}{WT \cdot N_{L2}} > a \cdot N_{ROS}$$

stability condition for TDAQ configuration parameters

TS, WT: strength coefficients for EB and LVL2 systems a: LVL2 acceptance

L2PUs run without algorithms, with multiple parallel threads
 each L2PU represents an LVL2 subfarm

Combined system -2

- Except ROS, multiple instances of TDAQ applications run in parallel for max readout rate; each ROS is responsible from a section of the detector
- ROS runs multiple tasks, and its performance can affect the LVL1 rate
- $CPU_{ROS} = R_{EB} \times CPU^{EB} + R_{L2} \times CPU^{L2} + R_{L1} \times CPU^{CI}$
- **CPU**^{EB} is the CPU power spent by a ROS on 1 kHz of Event Building task
- ▶ **CPU^{L2}** is the CPU power spent by a ROS on 1 kHz of LVL2 ROI collection task
- **CPU^{CI}** is the CPU power spent by a ROS on 1 kHz of Event Clear task

Event building only Modeling preseries

2 ROS and 1, 2 and 4 SFIs (*DFM internal trigger*)

Modeling is able to reproduce the <u>impact of configuration</u> <u>parameters</u> and the limitations coming from various TDAQ components.

Combined System

Modeling final ATLAS

 Simulations from preseries test bed was scaled up to final ATLAS size: 131 ROS, 110 SFIs, 504 L2PUs

- out of 150 ROS, only 131 accessed by LVL2 are simulated, no algorithms in LVL2

Adding Event Filter

- Output from SFI to EF nodes decreases maximum SFI throughput.
- The throughput with EF saturates to about 80% of the maximum for large events. (ATLAS events ~1.5MB)
 - 80 / 0.80 = 100 SFIs needed for final ATLAS
- 2EF nodes (w/o) algorithms are enough to saturate 1 SFI
 - 6 x2=12 EF nodes needed to drive the pre-series.

Adding Event Filter details: EB Throughput Filter details: K. Kordas' talk

- Output from SFI to EF nodes decreases maximum SFI throughput.
- The throughput with EF saturates to about 80% of the maximum for large events. (ATLAS events ~1.5MB)
 - 80 / 0.80 = 100 SFIs needed for final ATLAS
- 2EF nodes (w/o) algorithms are enough to saturate 1 SFI
 - 6 x2=12 EF nodes needed to drive the pre-series.

Adding SFO

- ATLAS writes 200Hz for events ~1.5MB => 300 MB/s in total
 - TDR: 15MB/s of throughput on single disk: 20 .. 30 PCs up to 450 MB/s
- ATLAS requires ~24 hour independent running => ~25 TB total disk space
 - TDR: ~30 1U Nodes with 1TB of HD each
- Faster disk I/O and larger disks could mean less SFOs to maintain
- RAID can bring protection against failures, but:
 - which raid level? (Raid1, Raid5, Raid50), which filesystem, 64-bit?

0.5 .. 1.5MB events, linux ext2 filesystem, 372GB disks 5.2 TB Raid5 or Raid50

writing speed (MB/s)	1u-sw	1u-hw	3u-hw	 ◆ 5 such node (+1 hot spare) can match the speed and capacity
raid1 (2HD)	44	48	51	requirements+ less nodes: less space, less
raid5 (3HD)	53	73	73*	work, less problems! * 93 MB/s with 6HD 14

Adding a detector

• Using pre-series with Tile Calorimeter Barrel setup at the pit (16 ROLs in 8 ROBINs, 2 ROSs)

ROD

ROS

SFI

DFM

Possible Setups

To Disc

- Simple EB (DFM self trigger)
- Combined (ROIB trigger)
- Goals for this exercise:
 - Exercise the TDAQ chain (done)
 - Write data @ SFO level (done)
 - Use HLT sw to match μ tracks
 - (prevented by lack of time)

SFO

Data Path

start EB

Trigger Path

EF

Adding a detector

- Using pre-series with Tile Calorimeter Barrel setup at the pit (16 ROLs in 8 ROBINs, 2 ROSs)
- Possible Setups
 - Simple EB (DFM self trigger)
 - Combined (ROIB trigger)
- Goals for this exercise:
 - Exercise the TDAQ chain (done)
 - Write data @ SFO level (done)
 - Use HLT sw to match µ tracks
 - (prevented by lack of time)

ROD

ROS

DFM

Adding Monitoring

Efficiency **ROS and SFI monitoring** 100 80 60 40 20 **ROS and SFI** -Monitoring 0 0.05 0.1 0.15 0 0.2 monitoring freg.

▶8 ROS x 8 SFI system, EB only, Gigabit limited

S ► Each node running 1 sampler

As monitoring rate increases,
 EB (& monitoring) rate drops.

Efficiency is obtained by comparing rates with and without monitoring.

For both applications, up to 3% of the maximum input rate can be send to monitoring without affecting the readout rate. 16

Stability & Recovery issues

EB Rate	(Hz)		~	Per	formance of 8x	8x20, TS=14, A	Acc=10				
8000 -											
7000 -		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		······································	~~~~~ <u>~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·/····	······V·····V····[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~ <u>~</u>	·V·······
6000 -											
5000 -											
4000 -											
3000 -											
2000 -	C	ombine	ed syster	n stable	e run at	10% a	ccept r	atio	for ~8.5 ho	ours	5
1000 -			•				•				
0 -			1				1	1	1		
(0	50	100	150	200	250	300	350	400	450	Time (min) 500

Fault tolerance and Recovery tests

- Force systematic failures in hardware and in software, check the system recovery
 - Almost all infrastructure application failures can be recovered
 - Apart from ROS, all DataFlow applications can be recovered. (ROS needs hardware handshake with detector side)
 - For hardware failures, Process Manager will be part of Unix services to reintegrate a dead node into TDAQ chain.

Replaying physics data

- Event data files from simulation studies for different physics objects (muons, e, jet) were preloaded into ROS & ROIB
- The whole TDAQ chain was triggered by the ROIB
- Various physics algorithms were run at the LVL2 farm nodes to select events matching the required triggers
- Selected events were assembled from all ROS and send to event filter farm

Replaying physics data

- Event data files from simulation studies for different physics objects ithm details: (muons, e, jet) were preloaded into ROS & ROIB K. Kordas' talk
- The whole TDAQ chain was triggered by the ROIB
- Various physics algorithms were run at the LVL2 farm nodes to select events matching the required triggers
- Selected events were assembled from all ROS and send to event filter farm

Next steps

- •Exploitation with algorithms
- •Garbage collection
- •State transition timing measurements
- Preseries as a release testing environment

Conclusions

✓ Pre-series system has shown that ATLAS TDAQ operates reliably and up to the requirements.
 ✓ We will be ready in time to match the LHC challenge.

• The final ATLAS architecture as modeled.

details

EB performance for diffrent control network protocols

• small size system doesn't see any difference

the number of worker threads is set to 6

machine park

• ROS x 11

- > CPU : Intel Xeon, 3.2 GHz UP
- Memory : 512 MB
- SFI x 6
 - > CPU : Intel Xeon, 3.2 GHz SMP
 - Memory : 512 MB
- L2PU x 30
 - > CPU : AMD Opteron P250, 2.4 GHz SMP
 - Memory : 4 GB
- L2SV x 2
 - > CPU : Intel Xeon, 3.2 GHz SMP
 - Memory : 512 MB
- DFM x 2
 - > CPU : Intel Xeon, 3.2 GHz SMP
 - Memory : 512 MB
- SFO x 2
 - > CPU : Intel Xeon, 3.2 GHz SMP
 - Memory : 4 GB
- EF x 12
 - CPU : AMD Opteron P250, 2.4 GHz SMP
 - Memory : 4 GB

Switches

- L2/EB switch :
 - 24 GE fibre ports
 - 35 GE copper ports (36 minus one management port)
 - > 2 10GE fibre ports (only one used)
- > L2PU concentration switch :
 - 48 GE copper ports
 - 2 10 GE fibre ports (only one used)
- BackEnd (EF central) switch:
 - 24 GE copper ports
- > EF switch (rack concentrator) :
 - 24 GE copper ports
- **DOLARs** (used to emulate output from ROD)
 - installed in pc-preseries-ros-01
- ROBINs

≻

- > installed in pc-preseries-ros-02
- > pc-preseries-ros-03
- » pc-preseries-ros-04
- > pc-preseries-ros-05