
National Energy Research
Scientific Computing Center
(NERSC)

Eclipse as Physicist Work Environment

Wim T.L.P. Lavrijsen, Sebastien Binet
NERSC HENPC, LBNL
CHEP – Mumbai, February 2006



What is Eclipse?

• Eclipse is:
an open source community whose projects are focused
on providing a vendor-neutral open development platform
and application frameworks for building software.

• The Eclipse Foundation is:
a not-for-profit corporation formed to advance the
creation, evolution, promotion, and support of the Eclipse
Platform and to cultivate both an open source community
and an ecosystem of complementary products,
capabilities, and services.

• Variety (!) of big-name players:
– IBM, Intel, Borland, CA, BEA, Sybase,
Nokia, Wind River, HP, SAP



Best known face of Eclipse: IDE

__doc__ string

CVS tree

Interactive prompt

Code editor

Code completion

Module contentPyLint



Looks good ... usable?

• Need recent hardware (OS/JVM dep.)
– Ongoing dev. to improve performance
– Eclipse itself is nicely responsive
• Editors, wizards, code-completion, etc.

– Code compilation slower than shell
–Memory hungry (as is Atlas Software)
• E.g. can't index/build ROOT on a 4GB box

• Redundancy: yet another Java ...
– GUI toolkit (SWT)
– Component model (Equinox)



Atlas problems to solve

• Software life cycle
– Not part of average physicist's toolkit
– Neither intuitive, nor explorable

• Tool integration
–Multi-language environment
– Individual tool interactions
– Setup/environment difficulties

• Beginners sandbox
–More sophisticated “undo” than “rm -rf”



IDE is just one application ...

JVM+JCL Foundation J2SE v1.x

IDE Platform
UI + SDK

RunTime JFace

OSGi SWT

UI

low-level

high-level

structural

applications

components

Rich Client Platform

PDE

JDT CDT

PyDev

YourTool

YourApp



Middleware

• Not a GUI, but an application platform
– Tools integration
• Multi-language, -platform, and -vendor
• Adaptation, distribution (install/updates)

• Component model implements OSGi
– http://osgi.org (version 4)
– Plugins/Bundles w/ life- and runtime mgmt
• Only connect through extension points
• Each their own “execution space” (i.e. class
loader and process environment)



Open Services Gateway initiative
Component Model

• Complexity solvable by modular sw
– Only possible if dependencies managable
• 100% automatic <=> 100% strict (no backdoors)
• Limited human input ok, if always verified

– Shared libs, .class files != modular
• More like a grab bag: access is not controlled

• Lifetime control starts at installation
– Eclipse: from Eclipse startup

• Connection control through broker
– Not (yet) implemented in Eclipse



Tools integration

Java
Python

GCC

Eclipse
Platform

ASK
JEP

.project

.cdtproject

CVS

gdb

pdb

jdb

Pacman
Pacman plugin

ASK plugin CMT

User
Code

Tutorials

Atlantis
Atlantis plugin

Athena

How-to's

Languages

Workflow

External Tools

Atlas Framework



Athena Startup Kit (ASK)

• User-space set of tools
– Fills voids left by other applications

• Code generation for Atlas Framework
– Algorithms, AlgTools, DataObjects

• RunTime management
– Site abstractions (CERN, BNL, local, etc.)
– CMT requirements, config, setup
– POOL file catalog maintainance

• Module, fully scriptable, CLI, GUI



Example Use Case

End-user Workflow
Code creation, build, run, and check-in



Wizard for new package



Build with external tool



Add to repository



Conclusions and Outlook

• Eclipse has lots of potential uses
– Impressive, full-featured IDE
– Individual tool execution environments
– Allows interactive how-to's

• Plugin development is easy and clean
– Rewarding for post-doc/student

• Maybe too top-heavy (esp. GUI)
– Atlas sw itself has high requirements


