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Introduction

d Iterative method for global alignment using charged tracks.
1 Alignment parameters are updated after each track.
d Update is not restricted to the detector units that are crossed by the track.

1 Update is restricted to detector units that have significant correlations with
the ones in the current track.

1 No inversion of large matrices.

1 Certain amount of bookkeeping is required.
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Introduction

1 Requires an already aligned and fixed reference system.
1 All updates are relative to this reference system.

1 Possible to use prior information about the alignment obtained from mechanical
and/or laser measurements.

1 Possible to fix the position of certain detector units by giving them small prior
uncertainty.

1 Several detectors can be forced to move along with each by giving them large
prior correlations.
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The Kalman filter algorithm

1 Assume we have estimated alignment parameters d with a variance-covariance
matrix [JD. They can come from previous measurements or a first guess either.

1 The observations m of a track depend on the (true) track parameters x; and
on the (true) alignment parameters d;:

m = f(x,dy) +€, cov(e)=V.

The stochastic vector € contains the effects of the observation error and of
multiple scattering. Its variance-covariance matrix V' can be assumed to be
known. Energy loss is taken care of by the track model f.
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The Kalman filter algorithm

1 The track model is linearized by a first-order Taylor approximation:

Lt

m:c+Adt+Bmt+€:c+(A B) (dt)+s,

A = 0m/8mt]me, B = (‘9m/8dt‘de, c = f(xe,d.) — Ad. — Bx,.

1 The expansion point d. is the nominal sensor position.
1 The expansion point x. is the result of a preliminary fit.

d x. is biased because of a lack of knowledge of the alignment parameters, and
gets weight 0 in the update.
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The Kalman filter algorithm

1 Update equation of the alignment parameters:

d=d+DATGm-c— Ad), G=V'-v'BB'VB) 'B'v

1 Update of the covariance matrix:

AN

D = (I _ DATGA) D (I _ ATGAD) + DATGVGAD.

Both terms on the right hand side are positive definite, so the left hand side
Is garantueed to be positive definite as well.
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The Kalman filter algorithm

J

J

When taking a closer look on all matrices in the update equations it turns out
that DA’ is the only large matrix.

The size of this matrix decreases if the update is restricted to detector units
which have significant correlations with the ones in the current track.

For this reason, attach to each detector unit 7 a list L; of the detector units
which have significant correlations with 7. L, contains only ¢ itself in the
beginning and grows as more tracks are processed.

The speed of the update depends on the size of the list L of all detector units
which are correlated with the ones crossed by the current track: L = J,.; L;.

The computational complexity of the parameter update is of the order |L| -k,
where k is the number of detector units hit by the current track.

The computational complexity of the covariance matrix update is of the order
of |L|?.
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The Kalman filter algorithm

d Regarding the computational complexity it is of crucial importance to restrict
the size of the list L to an acceptable number.

d Current proposal:

<> Define a relation “ ~" between two different detector units 7 and j

1 ~ J <= 1 and 7 have been crossed by the same track.

<> Define a metrics on the basis of this relation:

If 2 ~ 21 ~ 19 ~---~1, ~ jis the shortest chain connecting ¢ to j, the
distance is d(7,7) = n + 1. In particular, if ¢ ~ j, then d(z,7) = 1.

A Kalman Filter for Track-based Alignment 8 9



The Kalman filter algorithm

<> Using this distance, the following algorithm for updating the lists L;, © € I,
IS proposed:

For all © € I do:

e Forall j €I\ {i} do:
Forall k€ L; with d(k, j) < dmax, add k to L; and store d(k, i) = d(k, j)+1.

e If a detector k& occurs several times in L;, keep only the occurence with the
smallest distance d(k, 7).

1 The threshold d,,. is the largest distance for which correlations are deemed
to be significant.

1 Needs to be tested and tuned on “real” tracks
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Simulation experiments in a simplified setup

1 Study of the basic properties of the method in a simple, small setup.

1 Full covariance matrix is updated.

1 Eight detector layers along the z-axis, with a spacing of 10cm .

 In each layer, there is a row of five detector units, each 10 x 10 cm 2.

The simulation setup
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A schematic view of the simulation setup.
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Simulation experiments in a simplified setup

L O O o
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Straight tracks are simulated such that each track crosses all detector layers.
The intersection points are smeared by a Gaussian resolution function.
The standard deviation of the observation error is 50 um both in x and in y.

At least two detector units in different layers are required to fix the reference
frame.

All detector units apart from these two are misaligned by shifts in x and y.

The shifts are generated randomly by drawing from a Gaussian distribution
ten times as wide as the observation error.

The positions of the reference units are fixed by giving them a very small prior
uncertainty of the order of 0.1 ym.

The prior uncertainty of the other units is set to 1 mm..
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Simulation experiments in a simplified setup

d A quantitative assessment about the algorithm’s precision can be made by
computing the RMS of the difference 0 between true and estimated shifts.

1 The speed of convergence is measured by the number of tracks required to
bring the standard errors of all estimated shifts below a certain bound. In the
following, we have used a bound of 10 um.

d The number and relative position of the reference units has a large influence
on the speed of convergence.
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Left: An example of the evolution of the RMS of 4. Right: Number of tracks required for
convergence as a function of the position of the second reference unit.
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Simulation experiments in a simplified setup
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Correlation matrix of the estimated x shifts, after 5 (left), 50 (centre) and 500 (right) tracks.
The layers are separated by thick black lines. Units 18 and 23 are the reference units.
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Results from the CMS Inner Tracker

1 Study of the convergence and stability of the method in the CMS Inner Tracker
using ORCA and its alignment interface.

A wheel-like setup containing 156 modules from the Tracker Inner Barrel was
used.

A schematic view of the (sub-)detector geometry.
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Results from the CMS Inner Tracker

d Tracks of muons (u*, p~) in a homogeneous magnetic field (4T) were
produced with a simplified fast simulation, simulated under the same
hypotheses as used in the reconstruction (multiple scattering, energy loss,
detector resolutions, etc.).

d The intersection points are smeared by a Gaussian resolution function (Pixels:
x and y, Strips: only z).

1 The standard deviations of the observation errors are according to their nominal
values.

1 Modules farther away from the interaction point are less frequently hit.
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Results from the CMS Inner Tracker

d The Pixel Detector is used as reference frame and is therefore not misaligned.

1 All Silicon Strip Modules (1D as well as 2D) are misaligned by shifts in  and
y direction.

1 The shifts are generated randomly by drawing from a Gaussian distribution
with o = 100 um.

d The positions of the reference units are fixed by giving them a very small prior
uncertainty of the order of 0.01 um.

(d The prior uncertainty of the other units is set to 0.5 mmin z and 0.5cmin y;

(1 The concept of update lists has been applied here; the threshold of the update
lists was set to d,.x = 0.
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Results from the CMS Inner Tracker
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Convergence of estimates on the local x-shifts is quite good but depends on the the distance
from the reference system.
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Results from

the CMS Inner Tracker
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Distribution of the local x-shifts before alignment and after 100,000 processed tracks.
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Results from the CMS Inner Tracker
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Grayscale-coded visualization of the metrics (left) and the correlatlon matrix ( rlght) for all
modules in the wheel-like setup. Comparing these figures shows that the choice of d(i,7) < 6
doesn’t exclude modules with relevant correlations during update. The modules are ordered by

layer and increasing (global) polar angle and are indexed from 1 to 156.

Irmax 1 2 3 4 5 6
o[um] | 24.75 | 21.38 | 20.97 | 20.95 | 20.94 | 20.94
T[s] 472 | 604 | 723 | 936 | 1152 | 1319

Precision and computing time as function of d, ..
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Conclusions and Qutlook

Although the method has been shown to work in principle, clearly more
development, testing and tuning is required to meet the challenge of a full
alignment of the CMS Tracker.

1 The distance cut d,.,x has to be optimized; this is particularly important in
view of the influence of the maximal distance on the computation time.

d The scaleability of the algorithm has to be studied on a larger number of
modules.

1 The simplified fast track simulation has to be replaced by a full simulation.

d In view of the slower convergence for modules in the outer layers, alternatives
to using single tracks are desirable. Using constrained muon pairs from Z- or
J/1-decays is an auspicious possibility.
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