
MEASURING THE QUALITY OF SERVICE ON NODES IN A CLUSTER

Rohitashva Sharma*, P. S. Dhekne*, R. S. Mundada*, Sonika Sachdeva*,
Computer Division, Bhabha Atomic Research Centre, Mumbai, India

Helge Mainhard#, Olof Barring#, Tony Cass#, CERN, Geneva, Switzerland

Abstract

It is important to know the Quality of Service offered
by nodes in a cluster both for users as well as local
resource management software like LSF, PBS and
CONDOR for submitting a job on to a given node. This
will help in achieving optimal utilization of nodes in a
cluster. Simple metrics like load average, memory
utilization etc do not adequately describe load on the
nodes or Quality of Service (QoS) experienced by user
jobs on the nodes. We had undertaken a project to predict
Quality of Service seen by user job on a cluster node by
correlating simple metrics like Load Average, CPU
Utilization and IO on the node. This paper presents our
efforts and methodology we have followed for predicting
QoS of nodes in a cluster.

 We have derived QoS metric in 3 different ways. I) by
using Unix Load average metric, II) by using VmStatR
metric III) By using CPU utilization and load on the node.
We will discuss variations between measured execution
time for sample probe programs and execution time
predicted by QoS metric derived in above-mentioned
manner. We have also studied behavior of CMSIM
(simulation) and ORCA (reconstruction) programs under
various load conditions and tried to find correlation metric
to predict QoS for these jobs. Finally, we will present
difficulties experienced in predicting Quality of Service
on nodes in a cluster

INTRODUCTION

Computer farms or clusters have become common in
any organization to fulfill the computing needs. A system
administrator should have to manage cluster in such a
way that the resources should be used optimally to get
maximum throughput. To achieve this one must know the
capability or resource provided by each node in the
cluster. Linux system parameters like load average do not
adequately describe the load on a given node, which
intern results in less optimal utilization of resource.

We Computer Division, BARC in collaboration with IT
Division, CERN took up a project to predict Quality of
Service (QoS) offered by the node for a given task. The
value of QoS varies between 0 and 1. This metric defines
the goodness of the node for further tasks. If we know the
execution time of task in no load condition on a given

node we can predict the execution time in given
conditions using QoS metric. The relation is defined as

QoS
T

T noload
execution =

Texecution = Wall clock execution time for any task
Tnoload = Wall clock execution time of the task on a

given node without load
QoS = Quality of Service

In further sections we will discuss the methodology

used and observations in detail.

APPROACH / METHODOLOGY

 Depending on the type of resource used by a task, we
classified the tasks in three categories- CPU bound, IO
bound and network bound tasks. CPU bound task mainly
perform computations during the course of its execution
and an IO bound task spends most of its execution time in
doing IO operations on disk. When a task is submitted its
resource requirement depends on its task category so QoS
will be different for different type of tasks submitted to
the node

We selected the probe applications, which are
representative of each task category. The execution time
of probe applications in no-load condition and in different
load conditions will be used to predict the Quality of
Service of a given node. We also developed the programs
to generate load in each task category on the node. The
idea is to generate different kind of load combinations
using combinations of loading programs and measure the
execution time of representative probe.

System metrics are monitored to correlate the load on
the node with the execution time of probe. We use EDG-
Fabric Monitoring System to monitor the system metrics.
Metrics are measured at the start of the probe as well as
during the execution of the probe. Then the wall clock
execution time of the probe is correlated with metrics
monitored before submission of probe. Datasets are
generated for all the probes in different load conditions.

We selected LINPACK CPU benchmark program as
CPU bound probe as it represents scientific programs and
performs mostly CPU bound operations. We developed a
program for generating CPU bound load on the node. We
could run multiple instances of loading program to vary
CPU load. Disk io can be done differently on a given

*{rsharma, dhekne, rsm, sonikam}@barc.ernet.in
#{Helge.Mainhard, Olof.Barring, Tony.Cass}@cern.ch

node and system behaves differently in different cases.
We considered two kind of disk IOs one where disk io is
done in big blocks of data (referred as block IO in rest of
the paper) and the other where IO is done in small chunks
(referred as character IO in rest of the paper). For disk IO
bound probe we used a simple disk io benchmark
program called Bonnie. The code of bonnie was modified
to make it run as per our needs. We also developed
programs to generate both kinds of Io loads. We left the
network bound exercise as the test was being done for all
sequential programs and there is very less network
communication involved. This was also to keep things
simple as execution time of network bound task depends
on the load on communicating partner as well.

We developed scripts to run probes in different load

conditions. The scripts are responsible for generating a
given load condition, monitor system metrics and
launching of probe. The output of the script is a formatted
text file containing metric values and probe execution
time. This file can be imported to Microsoft Excel for
further analysis.

SETUP

To carry out these tests we setup a Linux cluster with
32 nodes where each node comprised of Pentium 4
processor @1.6 GHz with 640 MB memory and 40GB
hard disk. Each node runs a copy of RedHat Linux 7.3
operating system. EDG Fabric Monitoring System is also
installed on the cluster to monitor system parameters.

OBSERVATIONS

We generated several datasets of probe execution time
and system metrics. The monitored system metrics are
load average, memory utilization, CPU utilization, swap
space utilization etc. We correlated the metric values with
the execution time of the probe. We had to eliminate a
few metrics from correlation, as their effect on execution
time of probe could not be justified. In this section we
will discuss about the variation of execution time with
relevant metrics and need of other metrics to correlate.

CPU Probe

We correlated the execution time of CPU probe in

different load conditions with load average metric. We
have used 1 minute load average because it is the one that
better represents dynamic load changes. Using load
average QoS is defined as

QoS =
eLoadAverag+1

1
 (Equation 1)

Figure 1 shows the variation of wall clock execution
time of the CPU bound probe with respect to Unix Load
Average in CPU, CPU + character IO and CPU + block
IO load. You can see that in CPU and CPU + character IO
load execution time increases with increase in load
average but in case of CPU + block IO load execution
time remains approximately constant with increasing load
average.

Execution Time vs 1 Min. Load Average

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

1 min. Load Average x 100

E
xe

cu
ti

on
 T

im
e

(S
ec

)

CPU Load

Char IO Load

Block IO Load

Figure 1: Variation of Execution Time of CPU probe with

Load Average

Unix load average includes the average number of

processes ready to run and average number of processes
waiting for IO. This makes load average unfit for
predicting QoS for CPU bound tasks.

This forces us to have other means to predict QoS for

CPU bound tasks. We propose two methods to predict the
QoS. One is to measure a metric (later called VmStatR)
that represents running average of number of processes in
run queue. The QoS can be defined as

QoS =
VmStatR+1

1
 (Equation 2)

We added a sensor in monitoring system to measure

VmStatR metric and executed the CPU probes in different
load conditions and observed the variation of execution
time of probe with VmStatR metric. These variations are
shown in figure 2. It is evident from figure 2 that
VmStatR represents true load on CPU and can indicate
about the CPU available to newly submitted task. The
execution time of probe varies linearly with VmStatR in
all three load conditions.

Execution Time vs VmStatR

0

100

200

300

400

500

600

700

0 500 1000 1500 2000

VmStatR x 100

E
xe

cu
tio

n
Ti

m
e

(S
ec

)

CPU Load

Char IO Load

Block IO Load

Figure 2: Variation of Execution Time of CPU probe with
VmStatR

Available CPU to a new process can be calculated

using CPU utilization metric. CPU utilization metric
includes CPU time spent in user mode, system mode and
the time it was idle. These times are represented in
percentage. When a new process is submitted, it will be
entitled for available idle time and a share of user and
system time. The QoS can be defined as

100
11

�
�

�
�
�

�

+
+

+
+

= VmStatR
SystemTime

VmStatR
UserTime

IdleTime
QoS

 (Equation 3)

We calculated the QoS for CPU probe in block IO load

condition in which we were not getting good results using
load average. The table below shows the observations for
this case. We can see here that the predicted QoS using
equation 1 (load average) reduces with increasing block
IO load but the predicted QoS using equation 3 is not
varying hence the execution time of probe.

Table 1: Variation of predicted QoS using equation 1 and

3 in block IO load condition

QoS using eq. 1 QoS using
eq. 3

Execution
Time (Sec)

0.2433 0.4300487 32
0.1605 0.4375441 31
0.1329 0.4624468 32
0.1136 0.415 30
0.1042 0.4536079 31
0.0952 0.4290476 30
0.0869 0.4430435 31

For the final comparison we executed CPU probe under
different load combinations and measured the execution
time. The loading combinations are

CPU Load (LC)
CPU Load + Block IO Load (LC + LB)
CPU Load + Character IO Load (LC + LCh)
Block IO Load + Character IO Load (LB + LCh)

Figure 3 shows the comparison of measured execution

time with the execution time calculated using QoS
obtained from all three equations.

Comparison of the Measured and Predicted Exec Time
for CPU Probe

0

20

40

60

80

100

120

140

160

180

1 2 3 4

LC+LB LC LC+LCh LCh+LB

C
PU

 P
ro

be
 E

xe
c

T
im

e

Measured Exec Time

Equation 1

Equation 2

Equation 3

Figure 3: Comparison of measured execution time of CPU

probe with predicted execution time

IO Probe

For IO probe we concentrated mostly on block IO

operations. We executed IO probe in different loading
conditions as was done for CPU probe and calculated the
QoS using the three equations. Figure 4 shows the
comparison of measured execution time with the
predicted execution time.

Co mpa r i s o n o f Me a s ur e d a n d P r e d i c t e d E x e c u t i o n T i me o f
B l o c k IO P r o b e

0

5

10

15

20

25

30

35

40

1 2 3 4L C +LB LC LC +LC h

L C h +LB

Me a s ur e d E xe c T i me

E qua t ion 1

E qua t ion 2

E qua t ion 3

Figure 4: Comparison of measured execution time of IO

probe with predicted execution time

CMSIM
We predicted the execution time of CMSIM job using

the QoS metric and table 2 shows the measured execution
time, predicted execution time using equation 2 and
percentage error for CMSIM task in CPU + IO load
condition.

Table 2: Comparison of measured and predicted

execution time for CMSIM task

Measured
Execution
Time (Sec)

Predicted
Execution
Time (Sec)

% Error

585 610.8687 4.422
739 744.3209 0.720017
929 934.466 0.588377
1082 1080.702 -0.11999
1230 1216.43 -1.10328
1413 1381.166 -2.25294
1687 1707.317 1.204332

PROBLEM AREAS

In this section we will discuss the problems we faced

and possible causes of increase in error in prediction.
When the size of task is more than available memory,
swapping starts is the system. At this time Linux kernel
dynamically modifies the priority of the tasks and allocate
resources. Figure 5 below shows the variation of
execution time probe, % memory used and % swap space
used. Here we use a memory loading program, which
occupies the given amount of memory in the machine.
After every data sample we increase the memory
occupied by the loading program. As we can observe in
figure 5 that when there is enough memory to
accommodate probe there is not much variation in the
execution time of the probe but as the used memory
approaches 100% swapping starts and it becomes difficult
to explain the variation of execution time.

Variation of Memory, Swap and Exec Time

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sample No.

%
M

em
o

ry
 U

se
d

 %
S

w
ap

 U
se

d
 E

xe
c

T
im

e

0

50

100

150

200

250

300

350

400

% Used Memory

% Used Swap

Exec Time

Figure 5: Variation of Execution time when swapping is

there in node

The other limitation comes because of the monitoring
system. Latest value of a parameter is important to predict
better quality of service but it is very difficult to monitor
metrics at very high frequency, as at higher sampling
frequency monitoring will itself load the node.

In our calculations and observations we only consider

the metrics before the submission of task. It may so
happen that some task(s) exit during the course of
execution of our task and increase the QoS for the rest of
execution or some task(s) are submitted after the
submission of our task and deteriorate the QoS predicted
for our task.

CONCLUSION

After analyzing different datasets we have found that

the execution time of probe depends on no load execution
time of the probe and the availability of resources to it.
Equation 2 and 3 can be used to predict QoS for CPU
bound tasks. We successfully predicted QoS for CMSIM
jobs. Equation 1 gives the nearest prediction for IO bound
tasks. When there is swapping in the system it is difficult
to predict QoS and chances of error in prediction
increases with the time interval between metric samples.

REFERENCES

[1] Understanding the Linux Kernel, Second Edition by

Daniel P. Bovet, Marco Cesati
[2] Linux Kernel Internals (2nd Edition) by Michael

Beck, Harald Bohme, Mirko Dziadzka, Ulrich Kunitz,
Robert Magnus, Dirk Verworner

[3] “Predicting the CPU availability of Time-shared
Unix Systems” UCSD Technical Report, Rich Wolski,
Neil Spring, Jim Hayes

