
Techniques for high-throughput, reliable transfer systems: break-down of
PhEDEx design

Tim Barrass, University of Bristol, UK; Daniele Bonacorsi, INFN-CNAF, Italy;
Jose Hernández, CIEMAT, Spain; Jens Rehn, CERN, Switzerland;

Lassi Tuura, Northeastern University, USA; Yujun Wu, FNAL, USA

Abstract

Distributed data management at LHC scales is a stag-
gering task, accompanied by equally challenging practi-
cal management issues with storage systems and wide-
area networks. CMS data transfer management system,
PhEDEx, is designed to handle this task with minimum
operator effort, automating the workflows from large scale
distribution of HEP experiment datasets down to reliable
and scalable transfers of individual files over frequently
unreliable infrastructure. PhEDEx has been designed and
proven to scale beyond the current CMS needs. Few of the
techniques we have used are novel, but rarely documented
in HEP. We describe many of the techniques we have used
to make the system robust and able to deliver high perfor-
mance. On schema and data organisation we describe our
use of hierarchical data organisation, separation of active
and inactive data, and tuning the database for the data and
access patterns. Regarding monitoring we describe our use
of optimised queries, moving queries away from hot tables,
and using multi-level performance histograms to precalcu-
late partial aggregated results. Robustness applies to both
detecting and recovering from local errors, and robustness
in the distributed environment. We describe the coding pat-
terns we use for error-resilient and selfhealing agents for
the former, and the breakdown of handshakes in file trans-
fer, routing files to destinations, and in managing site pres-
ence for the latter.

WHAT IS PHEDEX?1

PhEDEx is the data placement and transfer system for2

the CMS experiment [1] at the Large Hadron Collider at3

CERN [2]. It manages continuous high-load data transfers4

from CERN to several dozen computing centres around the5

world; transfers among those centres; and also transfers for6

individual physicists for their private analyses.7

Building reliable high-performance distributed systems8

is hard; fortunately much prior art exists. The PhEDEx9

project [3, 4] has sought to apply the best practices known10

to us. We share here the techniques we have found useful.11

DISTRIBUTED WORKFLOWS12

Each site participating in PhEDEx transfers runs a suite13

of persistent processes called agents [5]. Each agent per-14

forms a specific small step of the overall transfer workflow.15

Most PhEDEx agents communicate indirectly via a16

blackboard [6], or tuple space[7], implemented as a high17

availability database. Similar structures have been used to18

coordinate the concurrent processing of large quantities of19

data ([8], and derivative projects e.g. SETI@Home) with20

simple single-step workflows. PhEDEx however uses the21

blackboard to coordinate quite sophisticated workflows in-22

volving many steps.23

Figure 1: PhEDEx blackboard/tuple-space architecture.

Workflow tasks are created and posted on the black-24

board, which acts as a task pool (Fig. 1). Imagine that25

task B can only be undertaken once task A has been com-26

pleted. If the two tasks are handled by independent pro-27

cesses a handover of responsibility is required. In PhEDEx28

responsibility for tasks is generally pre- allocated to known29

instances of each agent, although they could be picked dy-30

namically. When a task is complete, the agent posts status31

to the blackboard. Often this effectively creates a new task32

for another agent. The transfer workflow is defined by these33

state exchanges.34

For complex local workflows some agents use the file35

system in a manner very similar to mail transport agents36

[9] to persist workflow state. We are currently investigating37

peer-to-peer information-smearing algorithms [10] to dis-38

tribute partitions of the workflow state and limit PhEDEx39

reliance on a single central resource.40

The PhEDEx system is primarily a driver of large-scale41

data distribution. It does not provide any low level tools for42

making transfers, interacting with local storage systems, or43



cataloguing. Instead, well-defined points are provided for44

call-outs (via locally configured ’glue scripts’ to whichever45

tools are locally preferred for these operations). Every at-46

tempt is made to make sure that local information stays47

local, to insulate the global system from local changes.48

To limit the complexity of the system the software com-49

ponents are only indirectly dependent on each other– no50

component knows that any other component exists, or what51

they do. Agents are given increasing levels of autonomy52

to make decisions based on local conditions. To this end,53

agents are typically deployed at a site, rather than dealing54

with transfers remotely. That said, it is not yet possible to55

deploy and configure agents at every site, even though data56

can be created at Grid sites outside of the PhEDEx topol-57

ogy. To bring data created outside this topology to PhEDEx58

nodes we have an umbrella node that manages distant third-59

party transfers [11]. This sees use in CMS primarily to har-60

vest Monte Carlo simulated data, that can be created on any61

Grid site that allows CMS access.62

Robust agent design63

PhEDEx agents do not maintain internal state, and can64

be stopped or started without ill consequences even after65

a system crash. Permanent workflow state is stored on66

the blackboard, and changes to this state are transaction-67

safe. Agents and sites are restricted to changing relevant68

partitions of the database using fine-grained database role69

grants, reducing damage from operational mishaps.70

Each agent is responsible for one unreliable operation or71

workflow step, (e.g. file transfer, checking stager status or72

managing the overlay network partition for a site.) Each73

agent: finds pending work on the blackboard;picks and pri-74

oritises tasks, and executes them; and finally marks suc-75

cessful tasks complete, possibly indirectly assigning tasks76

to other agents in the process.77

SQL operations, embedded verbatim in agent code, are78

used for all communication with the blackboard. No inter-79

mediate server tiers or encapsulated SQL code in separate80

libraries are used. Using a central high-availability Oracle81

database cluster with 24/7 support has been advantageous.82

The gains in system robustness, availability and flexibil-83

ity have greatly outweighed the disadvantages, for example84

having to manage the redistribution and migration of client85

code on blackboard schema or SQL modifications.86

Distributed handshakes87

Tasks are joined to form a workflow using a handshake–88

a writing and reading of state information to and from the89

blackboard by a pair of agents. The definition of what state90

information is available at the start of a step, and what91

should be available at the end, is the basis for the design92

of agents, which act only on the appearance or change of93

state information.94

This translates conveniently to inserting a row into a task95

table in the database. To take on a task an agent simply96

reads a row and acts on it. When a task has been success-97

fully completed the row is updated, and potentially new98

rows are inserted. In complex workflows the state is check-99

pointed in the database, in which case processing continues100

from the last good check-point on agent restart, or when the101

agent finds itself idle, so that they recover from long-term102

skew of “lost” work.103

At present tasks are implicitly assigned to specific agent104

instances at specific sites. However, forthcoming devel-105

opments in some areas of PhEDEx mean that we are now106

creating a more dynamic environment, in which agents col-107

laborate to provide services by claiming responsibility for108

tasks, whether when first advertised or when it becomes109

apparent that the original claimant cannot fulfill its obliga-110

tion.111

When two agents need to co-operate more closely, for112

example during a file transfer, we use a more fine-grained113

state machine to guide the evolution of each state row on114

the blackboard. This enables each party to operate on sev-115

eral entries in identical states. In certain such state machine116

exchanges the agents require the other party to actively re-117

fresh the state – if the other party is unable to regularly re-118

fresh the state, it’s most likely also unable to do any useful119

work, and can be safely ignored.120

DATABASE ACCESS121

PhEDEx is written in object-oriented perl [12] and uses122

the DBI [13] Oracle [14] interface. Good advice is already123

widely available [15, 16] and will not be repeated here.124

Suffice to say the stated best practice guidelines are im-125

portant to follow.126

Robust common operations127

We provide convenience functions for common database128

operations. While making the database programming eas-129

ier, these functions allow us to handle problems in the dis-130

tributed environment. In particular we detect stuck or bad131

database, and statement, handles and flag connections as132

unstable, enabling agents to recover and reconnect.133

Maintain availability134

Our procedures aim to keep the database available at135

all times, although it naturally some interventions are in-136

evitable. We can remotely schedule agents to back off and137

to resume operations, allowing in-place tweaking without138

disturbing existing connections. Significant upgrades, still139

only requiring a shutdown of less than a day, are infrequent.140

DEFENSIVE CODING141

We explicitly assume every operation, however trivial,142

will fail. We provide safe operators for numerous tasks143

(e.g. writing temporary files and launching subprocess144

queues) so that the simplest operations are robust. We145



check for internal errors to prevent the propagation of er-146

rors between parts of the system that should be indepen-147

dent.148

Failure recovery tactics149

Our failure recovery tactics are typically quite simple: on150

failure, we first log the issue, back out and retry after a cool-151

off period. To retry, we clear certain local state caches, and152

then rely on global system consistency to trigger the retry.153

The agents flag repeated problems as bad, alert an operator154

and ignore them on subsequent iterations, unless the flag is155

removed.156

Experience shows that many of the tools in our environ-157

ment return misleading exit codes. We treat them with158

scepticism; each transfer is independently cross-checked159

for file existence and size. Checksums can also be checked,160

but this is a high-load task that is best handled in a parallel161

fashion, and not strictly coupled to the transfer operation.162

Simplicity163

We start with simple algorithms throughout. For exam-164

ple, transfer failure handling has evolved from a simple165

retry next time, through cooling-off processes to limited166

queue randomisation and prioritisation. Gradually subtler167

tactics are being implemented where necessary, making the168

system increasingly more autonomous [17]. For exam-169

ple, some of the more advanced agents detect pathologi-170

cal patterns and automatically throttle themselves. In these171

cases pathological patterns are identified by monitoring lo-172

cal rates – for example, the number of successful trans-173

fers per hour – and corrective behaviour is triggered when174

these rates pass high or low cutoff thresholds. Such be-175

haviour is basically a set of higher-order corrections, suited176

to systems with a stable, reliable underlying fabric where177

response is linear.178

ALGORITHMS179

The routing overlay180

An overlay network is used to describe a topology in181

which nodes represent storage resources, independent of182

the underlying network fabric [18]. This allows PhEDEx183

to cache data at regional centres for distribution to smaller184

sites.185

The overlay network is maintained by a quite static186

shortest-path algorithm, with shortest paths calculated us-187

ing Dijkstra’s algorithm [19]. A neighbour-list containing188

static link-weight information is stored on the blackboard .189

Routing agents act at and on behalf of each node in the net-190

work, and use Dijkstra’s algorithm to dynamically refresh a191

minimum spanning tree from their node to each other node192

in the network. This minimum spanning tree information193

is then stored in a routing table on the blackboard hold-194

ing source, destination, gateway, hops information. We de-195

scribe this as quite static as the topology is not subject to196

high churn, and the adjacency list is taken as the authorita-197

tive source of link state information rather than a dynamic198

exchange of state information between components. Thus199

the routing algorithm is effectively just a means of automat-200

ing the changes in the routing table necessary when nodes201

leave or join the topology.202

Routing files to destinations203

The PhEDEx topology is a weighted, generally not fully-204

connected graph. Files may need to be temporarily repli-205

cated to a regional centre before final replication to a desti-206

nation, to better manage the load on the central facility.207

A file routing agent acts on behalf of each node in the208

network, and is responsible for triggering the set of repli-209

cations that glue a transfer from source to destination to-210

gether. The file router uses the routing table to determine211

shortest paths from source to destination, and triggers the212

first transfer in the chain by inserting a row into a trans-213

fer state table giving source and destination information.214

When that transfer is marked complete it reevaulates the215

closest replica for each file and triggers the next transfer in216

the chain.217

Robust transfer handshake218

PhEDEx developed during times of unrest in underly-219

ing storage and transfer technology. Much functionality220

desired of storage systems – stage-on-demand, intelligent221

grouping of stage requests, sophisticated space manage-222

ment – is still not in evidence. The PhEDEx transfer hand-223

shake/workflow is therefore sophisticated and incorporates224

much of the functionality desired of underlying systems225

(see Fig. 2). Note that the transfer operation is a sub-226

workflow, with pre-delete, bypass, transfer, verify and pub-227

lish steps. The export step replicates functionality expected228

of underlying storage systems. The state transitions on the229

blackboard define the handovers of responsibility between230

distributed agents that together comprise the overall work-231

flow.232

PERFORMANCE233

Basic schema design and tuning234

Direct access to database resources and gurus is essential235

for database performance. We avoid using generic services236

that add an extra layer of indirection and processing over237

those provided by the database in favour of known, manual238

optimisations.239

Client or database processing?240

We’ve frequently changed the definition of a problem or241

an algorithm such that it can be executed as a small number242

of SQL statements rather than client-side logic. We use no243

stored procedures, and few triggers. We also divide respon-244

sibility between client and database engine intelligently –245



Figure 2: PhEDEx workflow state changes during a transfer handshake, with three agents involved.

Figure 3: Database design and access principles, and their
benefits.

pulling data over WAN links is unwise, a big join handled246

by the database engine is typically more efficient.247

Exploiting data relationships248

All data either has internal relationships allowing it to be249

grouped hierarchically, or can have arbitrary relationships250

imposed upon it. The CMS experiment typically groups251

files by demand for certain physics phenomena expressed252

in the data, so a file group is naturally the unit at which253

nodes subscribe to the data. PhEDEx then divides whole of254

the data into “streams”, those further into “blocks”, which255

contain files. Operating on streams and even on blocks is256

extremely fast, since the tables describing them are com-257

pact.258

Moreover, by operating on only “active” blocks– by ex-259

panding file information into hot tables only when they are260

actively being transferred– we massively reduce the num-261

ber of operations that touch file-level data at any time (see262

Fig. 4).263

Smart caching in stateless agents264

Although the agents are stateless with regard to critical265

global workflow state, some agents build caches to improve266

throughput. Caches tag data with a validity of some hours267

after which the record is purged and reloaded from the268

database on next use. This makes the agents self-healing.269

Caches are used only when the agent is the sole author-270

itative source for the data so it only needs to shield it-271

self against direct database changes, not changes by other272

agents. One example is the agent managing the stage space273



Hot Data

Cold Data

Transition
Table

History
Histogram

Triggers copy e.g.
transfer state changes

Crawlers generate 
summary data 
periodically and clean

Detailed information is
real-time correct, but is 
costly to query.

Archived data readily 
available, but has 
higher latency. 

Figure 4: Hot data is kept as compact as possible for effi-
cient access; cold data is effectively archived to make sure
it’s not processed unnecessarily.

of a given tape system at a site, which caches local filesys-274

tem structure information to enhance the efficiency with275

which it meets future stage-information requests.276

High performance monitoring277

Web monitoring pages showing current live state278

[20] can inhibit the performance of sizeable and active279

databases, let alone presenting historical plots and statis-280

tics.281

• Auxiliary monitoring tables are filled by background282

processes at regular intervals; web pages query these283

tables.284

• Update frequency depends on source data; most just285

captures overall state with a large ’select ... group by286

...’287

• Compromise between query cost and user require-288

ments for observation– varies between 40 seconds and289

15 minutes.290

• Visible updates guaranteed every 4-5 minutes us-291

ing multiple layers of aggregation, independent of292

database load.293

• Fine-grained partial histograms with 5-10 minute bins294

represent historical data (e.g. see RRD [21] and Mon-295

ALISA [22].)296

• Histograms updated on movement from hot to cold297

tables via holding tables.298

• Agents can access this historical information to help299

adjust their own behaviour, bringing us closer to de-300

veloping an autonomic system [17]. Adding dynamic301

behaviour is, however, complex.302

SUMMARY303

PhEDEx provides a robust and reliable infrastructure for304

driving large-scale dataset transfers. To make it reliable305

and robust, even when overlying an unstable fabric, it uses306

well-established principles of asynchronous systems de-307

sign, some of which we’ve summarised here. The use of308

these principles enables PhEDEx to be effective in a pro-309

duction environment, in which it currently manages nearly310

0.5PB of globally-distributed data, across heterogeneous311

storage systems. By continuing to incorporate existing and312

cutting-edge experience in asynchronous distributed sys-313

tems design we are confident that PhEDEx will be able314

scale to CMS’ required data volumes of order 10 PetaBytes315

a year.316

REFERENCES317

[1] CMS Collaboration, “The Compact Muon Solenoid Com-318

puting Technical Proposal”, CERN/LHCC 1996-045, 1996.319

[2] European Centre for Nuclear Research (CERN),320

http://www.cern.ch.321

[3] Rehn et al, “PhEDEx high-throughput data transfer manage-322

ment system”, CHEP06, Mumbai, 2006.323

[4] Barrass et al, “Software agents in data and workflow man-324

agement”, CHEP04, Interlaken, 2004.325

[5] The Foundation for Intelligent Physical Agents,326

http://www.fipa.org.327

[6] Corkill, “Collaborating software: Blackboard and multi-328

agent systems and the future”, Proceedings of the Interna-329

tional Lisp Conference, New York, 2003330

[7] Gelernter, “Mirrorworlds”, Oxford University Press, 1992.331

[8] Anderson, Kerpela and Watson, “High-performance task332

distribution for volunteer computing”, First IEEE Inter-333

national Conference on e-Science and Grid Technologies,334

2005.335

[9] Venema, Postfix, http://www.postfix.org.336

[10] Maymounkov and Mazieres, “Kademlia: A peer-to-peer in-337

formation system based on the XOR metric”, 2nd Interna-338

tional Workshop on Peer-to-Peer Systems, 2003.339

[11] Caballero, Garcia-Abia and Hernández, ”Monte Carlo pro-340

duction on the LHC Computing Grid”, CHEP06, Mumbai,341

2006.342

[12] Cozens, Object Oriented Perl,343

http://www.perl.com/pub/a/2001/11/07/ooperl.html.344

[13] Perl DataBase Interface (Perl DBI), http://dbi.perl.org.345

[14] Oracle, http://otn.oracle.com.346

[15] Bunce, “Advanced DBI Tutorial”,347

http://search.cpan.org/ timb/DBI AdvancedTalk.348

[16] Kyte, “Effective Oracle by Design”, Osborne ORACLE349

Press series.350

[17] IBM, “Autonomic Computing”,351

http://www.research.ibm.com/autonomic.352

[18] Wikipedia, “Overlay Network”, http://en.wikipedia.org..353

[19] Cormen, Leiserson, Rivest and Stein, “Introduction to algo-354

rithms”, 2nd Ed, MIT Press and McGraw-Hill, 2001.355

[20] PhEDEx live monitoring, http://cms-project-356

phedex.web.cern.ch/cms-project-phedex/cgi-bin/browser.357

[21] RRD, http://people.ee.ethz.ch/ oetiker/webtools/rrdtool.358

[22] MonALISA, http://monalisa.cacr.caltech.edu/monalisa.htm.359


