
Pick up and process work
sub idle
{
 my ($self) = @_;
 my $dbh = undef;
 eval
 {
 my $start = &mytimeofday();
 $dbh = &connectToDatabase ($self) or die "failed to connect";

 # Find out what’s posted for us to work on
 my %args = (":node" => $self->{MYNODE}, ":now" => $start);
 &dbexec($dbh, qq{
 update t_transfer_state
 set from_state = 1, from_timestamp = :now
 where to_node = :node and from_state = 0},
 %args);
 &dbexec($dbh, qq{
 update t_transfer_state
 set to_state = 2, to_timestamp = :now
 where to_node = :node and to_state = 0},
 %args);
 $dbh->commit();

 # Process files pending migration.
 my $rsstmt = $dbh->prepare(qq{
 insert into t_replica_state
 (timestamp, guid, node, state, state_timestamp)
 values (:now, :guid, :node, 0, :now)});
 my $tsstmt = $dbh->prepare(qq{
 update t_transfer_state
 set to_state = 3, to_timestamp = :now
 where guid = :guid and to_node = :node});
 my ($qstmt) = &dbexec($dbh, qq{
 select ts.guid, f.filesize, ts.from_timestamp
 from t_transfer_state ts
 join t_file f on f.guid = ts.guid
 where ts.to_node = :node and ts.to_state = 2},
 ":node" => $self->{MYNODE});

 while (my $row = $qstmt->fetchrow_arrayref())
 {
 my ($guid, $size, $time) = @$row;
 my $pfn = &guidToPFN ($guid, "srm", "local", @{$self->{PFN_QUERY}});
 my $status = 0;
 open(INFO, "srm-get-metadata $pfn |");
 while(<INFO>) {
 if (/isPermanent :true/) {
 $status = 1;
 }
 }
 close (INFO)
 or &alert("No dCache migration info for $pfn: $!");

 next if !$status;

 # Migrated, mark transfer completed
 &dbbindexec($tsstmt, %args, ":guid" => $guid);
 &dbbindexec($rsstmt, %args, ":guid" => $guid);
 $dbh->commit ();

 # Log delay data.
 my $nowh = &mytimeofday();
 &logmsg ("xstats: $guid $self->{MYNODE} 3 "
 . sprintf('%.2f', &mytimeofday() - $time)
 . " $size");

 # Give up if we've taken too long
 last if $nowh - $start > 10*60;
 }
 };
 do { &alert ("database error: $@");
 eval { $dbh->rollback() } if $dbh; } if $@;

 &disconnectFromDatabase ($self, $dbh);
 $self->nap ($self->{WAITTIME});
}

Here the agent connects to the central
blackboard. This automatically registers this
agent, picks up and acts on any messages
waiting for it, and opens a Perl::DBI connec-
tion to the database.

The agent acts on the blackboard ,
picking up any migrations (migrations
and replications are both referred to
as transfers) are awaiting its attention.
These are indicated by from_state = 1
(available). :node represents the
node at which the agent runs. These
transfers are set as to_state = 2 (in
transfer).

Comunication with the blackboard is not
mediated by any special framework:
Perl::DBI is used to connect to the data-
base and execute SQL, and SQL embedded
within the agents.

Potentially complex SQL statements are
prepared in advance, before being used to
act on information in the blackboard.

Details about a new replica are
posted on the blackboard.

Transfers are marked as complete,
indicated by to_state = 3.

Transfer details are read from the black-
board so the agent can query local
resources for migration state.

Read from the blackboard using
the transfer details query, and
process each result. Each result
represents a pending transfer.

Replicas are referenced by GUID; use this
GUID to lookup the physical filename of
the local replica in some local resource.

Query the local resource for
migration state-- the resource is
still repsonsible for handling the
migration operation, this agent
just passivaly checks to see
whether it’s been done. Handle
any error as a lack of informa-
tion.

When the file has been migrated to tape
it is treated as a new replica hosted by the
node. The agent uses the prepared state-
ments to post the details of the new
replica and update the transfer state on
the blackboard.

Alerts, errors and normal status
output are logged to local logfile
using a simple logging module.

For information, successful migrations
are also logged to local logfile.

If any problem is found with communication
with the blackboard, all transactions are rolled
back so they can be retried.

The agent tidies up its connection to reduce
load on the blackboard, and goes to sleep
before trying to pick up more work.

Bind variables are used wherever
possible, especially in situations
where the same query is used
repeatedly.

Agents derive from a base Agent class that
handles initialisation tasks common to all
agents. Each agent overrides ‘idle’, which is
called iteratively when initialisation is
complete.

Defensive coding
Assume every operation, however trivial, will fail. We provide safe
operators for numerous tasks (e.g. writing temp files; launching
subprocess queues). Check for internal errors to stop errors
spreading.

Failure recovery tactics

ß Log the issue, back out and retry next time, or after a
cool-off.

ß Clear local state cache, rely on global system consistency to
trigger retry.

ß Flag repeated problems as bad, alert operator and ignore.

Experience shows that many commands return misleading exit
codes. We treat them with scepticism; each transfer is indepen-
dently cross-checked for file existence and size. Checksums can
also be checked.

Simplicity
We start with simple algorithms throughout. For example, trans-
fer failure handling has evolved from a simple retry next time,
through cooling-off processes to limited queue randomisation
and prioritisation. Gradually subtler tactics are being imple-
mented where necessary, making the system increasingly more
autonomous [18]. For example, some of the more advanced
agents detect pathological patterns and automatically throttle
themselves. Such behaviour is basically a set of higher-order
corrections, suited to systems with a stable, reliable underlying
fabric where response is linear.

Using a central high-availability Oracle database cluster with
24/7 support has been advantageous. The gains in system
robustness, availability and flexibility have greatly outweighed
the complexity of distributing the client software and other
limitations.

Distributed handshakes
Tasks are joined to form a workflow using a handshake-- a writ-
ing and reading of state information to and from the blackboard
by a pair of agents. The definition of what state information is
available at the start of a step, and what should be available
at the end, is the basis for the design of agents, which are
implemented and then act only on the appearance of state
information.

This translates conveniently to inserting a row into a task table in
the database. To take on a task an agent simply reads a row and
acts on it. When a task has been successfully completed the row
is updated, and potentially new rows are inserted. In complex
workflows the state is check-pointed in the database, in which
case processing continues from the last good check-point on
agent restart, or when the agent finds itself idle, so that they
recover from long-term skew of "lost" work.

When two agents need to co-operate more closely, for example
for a file download, we use a strict state machine for each data-
base row. This enables each party to operate on several entries
in identical states. In certain such state machine exchanges the
agents require the other party to actively refresh the state -- if
the other party is unable to regularly refresh the state, it's most
likely also unable to do any useful work, and can be safely
ignored.

Each site participating in PhEDEx transfers runs a suite of agents [5].
Each agent performs a specific small step of the workflow.

Most PhEDEx agents communicate indirectly via a blackboard [6], or
tuple space[7], implemeted on a high availability database. These
structures have been used to coordinate the concurrent processing of
large quantities of similar data [8, and derivative projects e.g.
SETI@Home]. PhEDEx however uses the blackboard to coordinate
quite sophisticated workflows involving many steps.

Distributed workflows
For complex local workflows some agents use the file system in a
manner very similar to mail transport agents [9] to persist
workflow state. We are currently investigating peer-to-peer
agents [10] to distribute parts of the tuple space.

Agents are given increasing levels of autonomy to make deci-
sions based on local (perceived) conditions. To limit the com-
plexity of the system the software components are only indi-
rectly dependent on each other-- no component knows that
any other component exists, let alone what they do.

Robust agent design
PhEDEx agents do not maintain internal state. Agents can be
stopped or started without ill consequences even after a system
crash. Permanent workflow state is stored on the blackboard, and
changes to this state are transaction-safe. Agents and sites are
restricted to changing relevant partitions of the database using
fine-grained database role grants, further reducing damage from
operational mishaps.

Each agent is responsible for one unreliable operation or
workflow step, (e.g. file transfer, checking stager status or
managing the overlay network partition for a site.) Each agent:

ß Finds pending work on the blackboard.
ß Picks/prioritises tasks and executes them.
ß Marks successful tasks complete, possibly indirectly

assigning tasks for other agents.

SQL operations, embedded verbatim in agent code, are used for
all communication with the blackboard. No intermediate server
tiers or encapsulated SQL code in separate libraries is used.

PhEDEx architecture. Workflow tasks are created and posted on the blackboard, which acts
as a task pool. Here, task B can only be undertaken once task A has been completed, so a
handover of responsibility is required. In PhEDEx repsonsiblity for tasks is generally pre-
allocated, although they could be picked dynamically. When a task is complete, the agent
posts status to the blackboard. Often this effectively creates a new task for a another agent.
The transfer workflow is defined by these state exchanges.

http://cern.ch/cms-project-phedex/

What is PhEDEx?
Building reliable high-performance distributed systems is hard; fortunately much
prior art exists. The PhEDEx project [1,2] has sought to apply the best practices
known to us. We share here the techniques we have found useful.

PhEDEx is the data placement and transfer system for the CMS experiment [3] at the
Large Hadron Collider at CERN [4]. It manages continuous high-load data transfers
from CERN to several dozen computing centres around the world; transfers among
those centres; and also transfers for individual physicists for their private analyses.

Basic schema design and tuning
Direct access to database resources and gurus is essential for data-
base performance. We avoid using generic services that add an extra
layer of indirection and processing over those provided by the data-
base in favour of known, manual optimisations.

Client or database processing?

We've frequently changed the definition of a problem or an algorithm
such that it can be executed as a small number of SQL statements
rather than client-side logic. We also:

ß Use no stored procedures, few triggers.
ß Divide responsibility between client and datbase engine

intelligently-- pulling data over WAN links is unwise, a big join is
more efficient.

Exploiting data relationships
All data either has internal relationships allowing it to be grouped
hierarchically, or can have arbitrary relationships imposed upon it.
PhEDEx divides whole of the data into "streams", those further into
"blocks", which contain files. Operating on streams and even on
blocks is extremely fast, since the tables describing them are compact.

Moreover, by operating on only "active" blocks-- by expanding file
information into hot tables only when they are actively being trans-
ferred-- we massively reduce the number of operations that touch
file-level data at any time.

Performance Separating hot, active data

Smart caching in stateless agents
Although the agents are stateless with regard to critical global work-
flow state, some agents build caches to improve throughput. Caches
tag data with a validity of some hours after which the record is
purged and reloaded from the database on next use. This makes the
agents self-healing. Caches are used only when the agent is the sole
authoritative source for the data so it only needs to shield itself
against direct database changes, not changes by other agents. One
example is the agent managing the stage space of a given tape
system at a site.

High performance monitoring
Web monitoring pages showing current live state [15] can inhibit the
performance of sizeable and active databases, let alone presenting
historical plots and statistics.

ß Auxiliary monitoring tables are filled by background processes
at regular intervals; web pages query these tables.

ß Update frequency depends on source data; most just captures
overall state with a large ‘select ... group by ...’.
ß Compromise between query cost and user requirements for

observation-- varies between 40 s and 15 min.
ß Visible updates guaranteed every 4-5 minutes using multiple

layers of aggregation, independent of database load.

ß Fine-grained partial histograms with 5-10 min bins represent
historical data (e.g. see RRD [16] and MonALISA [17].)
ß Histograms updated on movement from hot to cold tables via

holding tables.
ß Guarantee we never need to query full historical data to build

accurate, low latency summaries. Query time depends only on
number of time bins queried, not table load.

ß Agents can access this historical information to help adjust their
own behaviour, bringing us closer to developing an autonomic
system [18]. Adding dynamic behaviour is, however, complex.

The routing overlay
An overlay network is used to describe a topology in which
nodes represent storage resources, independent of the un-
derlying network fabric [11]. This allows PhEDEx to cache
data at regional centres for distribution to smaller sites.

The overlay network is maintained by a link-state algorithm,
with shortest paths calculated using Dijkstra's algorithm [12].
A neighbour-list containing static link-weight information is
stored on the blackboard . Routing agents act at and on
behalf of each node in the network, and use Dijkstra's algo-
rithm to dynamically refresh a minimum spanning tree from
their node to each other node in the network. This minimum
spanning tree information is then stored in a routing table on
the blackboard holding source, destination, gateway, hops
information.

Routing files to destinations
The PhEDEx topology is a weighted, generally not fully-
connected graph. Files may need to be temporarily repli-
cated to a regional centre before final replication to a desti-
nation, to better manage the load on the central facility.

A file routing agent acts on behalf of each node in the net-
work, and is responsible for triggering the set of replications
that glue a transfer from source to destination together. The
file router uses the routing table to determine shortest paths
from source to destination, and triggers the first transfer in

Algorithms
the chain by inserting a row into a transfer state table giving
source and destination information. When that transfer is
marked complete it reevaulates the closest replica for each file
and triggers the next transfer in the chain.

Robust transfer handshake
PhEDEx developed during times of unrest in underlying storage
and transfer technology. Much functionality desired of storage
systems -- stage-on-demand, intelligent grouping of stage re-
quests, sophisticated space management -- is still not in evi-
dence. The PhEDEx transfer handshake/workflow is therefore
sophisticated and incorporates much of the functionality de-
sired of underlying systems.

Database access
PhEDEx is written in object-oriented perl [19] and uses the DBI [20] Oracle [21]
interface. Good advice is already widely available [22, 23] and will not be repeated
here. Suffice it to say the stated best practice guidelines are important to follow.

Robust common operations

We provide convenience functions for common database operations. While
making the database programming easier, these functions allow us to handle
problems in the distributed environment. In particular we detect stuck or bad
database, and statement, handles and flag connections as unstable, enabling
agents to recover and reconnect.

Maintain availability

Our procedures aim to keep the database available at all times, although it natu-
rally some interventions are inevitable. We can remotely schedule agents to back
off and to resume operations, allowing in-place tweaking without disturbing ex-
isting connections.

Significant upgrades, requiring a shutdown of ~0.25 day, are infrequent.

ß Deploy and test on developer testbed.
ß Develop, test, verify migration procdure on developer testbed.
ß Test migration on integration testbed in collaboration with a small set of

sites.

Once integration tests are complete we typically schedule 1-4 hour downtime to
migrate the production instance, and resume operation immediately.

[1]Rehn et al, “PhEDEx high-throughput data transfer management system”, CHEP’ 06
[2] Barrass et al, “Software agents in data and workflow management,” Computing in High Energy
Physics (CHEP04), Interlaken, 2004
[3] CMS Collaboration, “The Compact Muon Solenoid Computing Technical Proposal,” CERN/LHCC
1996-045 (1996).
[4] European Centre for Nuclear Research (CERN), http://www.cern.ch.
[5] “The Foundation for Intelligent Physical Agents,” http://www.fipa.org.
[6] Corkill, “Collaborating Software: Blackboard and Multi-Agent Systems and the Future,”
Proceedings of the International Lisp Conference, New York, 2003.
[7] Gelernter, “Mirrorworlds”, Oxford University Press, 1992.
[8] Anderson, Korpela, Watson, “High-Performance Task Distribution for Volunteer Computing”, First
IEEE International Conference on e-Science and Grid Technologies, 2005.
[9]Venema, “Postfix”, http://www.postfix.org.
[10] Maymounkov and Mazieres, “Kademlia: A Peer-to-peer Information System Based on the XOR
Metric”, 2nd International Workshop on Peer-to-Peer Systems, 2003.
[11] Wikipedia, “Overlay network”, http://en.wikipedia.org/wiki/Overlay_network.
[12] Cormen, Leiserson, Rivest and Stein, “Introduction to Algorithms”, Second Edition,MIT Press and
McGraw-Hill, 2001.
[13] Kyte, “tkprof”, http://www.oracleutilities.com/OSUtil/tkprof.html.
[14] Navas and Wynblatt, “The network is the database: data management for highly distributed
systems”, Proceedings of the 2001 ACM SIGMOD international conference on Management of dat,
2001
[15] PhEDEx live monitoring,
http://cms-project-phedex.web.cern.ch/cms-project-phedex/cgi-bin/browser
[16] RRD, http://people.ee.ethz.ch/~oetiker/webtools/rrdtool.
[17] MonALISA, http://monalisa.cacr.caltech.edu/monalisa.htm.
[18] IBM “Autonomic Computing”, http://www.research.ibm.com/autonomic.
[19] Cozens, “Object Oriented Perl”, http://www.perl.com/pub/a/2001/11/07/ooperl.html.
[20] Perl DataBase Interface, http://dbi.perl.org.
[21] Oracle, http://otn.oracle.com.
[22] Bunce, “Advanced DBI Tutorial”, http://search.cpan.org/~timb/DBI_AdvancedTalk.
[23] Kyte, “Effective Oracle by Design”, Osborne ORACLE press series.

PhEDEx workflow state changes during a transfer handshake., with three agents involved. Note
that the transfer operation is a sub-workflow, with pre-delete, bypass, transfer, verify and publish
steps. The export step replicates functionality expected of underlying storage systems. The state
transitions on the blackboard define the handovers of responsibility between distributed agents
that together comprise the overall workflow.

Robust, high-throughput transfer system
techniques Tim Barrass, University of Bristol, UK; Daniele Bonacorsi, INFN-CNAF, Italy; Jose Hernandez, CIEMAT, Spain;

Jens Rehn, CERN, Switzerland; Lassi Tuura, Northeastern University, USA; Yujun Wu, Fermilab, USA

Hot Data

Cold Data

Transition
Table

History
Histogram

Triggers copy e.g.
transfer state changes

Crawlers generate
summary data
periodically and clean

Detailed information is
real-time correct, but is
costly to query.

Archived data readily
available, but has
higher latency.

How PhEDEx protects hot data from unnecessary queries. History and cold archived data are
updated serially, in a single operation. Histograms are filled first, then the data copied toarchive
tables; remnant data is removed from the transition table. During this period the transition table
is locked so that it doesn’t get out of sync.

