Public Resource Computing and Geant4

J. Klem, Helsinki Institute of Physics

 I. Reguero, Ph. Defert, J. Lopez Perez, A. Ribon, Christian Soettrup CERN, Geneva, Switzerland

Abstract

Projects like SETI@home[1] use computing resources donated by the general public for scientific computing. Many of these projects are based on the BOINC (Berkeley Open Infrastructure for Network Computing) software framework that makes it easier to set up new public resource computing projects. BOINC[2] is used at CERN in the LHC@home project where more than 25000 home users donate time of their CPUs to run the SixTrack application. The LHC@home project has recently delivered the computing power of about five Teraflops, which makes it interesting also for other applications. In most cases BOINC applications are relatively small, CPU bound programs that can run in a sandbox but it has been shown that BOINC can also support more demanding data-intensive applications. Once the BOINC constraints are met, thousands of different instances of the programs can be run in parallel. The use of Geant4[3] in a public resource computing project has been studied at CERN. After contacts with developers we found that BOINC could be useful to run the Geant4 release testing process that was found to be a good case study to explore what we could do for more complex high-energy physics simulations. This is a simple test beam set-up to compare physics results produced by different program versions which allows validating new versions. Therefore we ported the Geant4 release testing software to the BOINC environment both in Windows and Linux and set up a BOINC server to demonstrate a production environment. The experience gained in this process, and the benefits and limitations of BOINC based projects for running high-energy physics applications are presented.
GEANT4 RELEASE TEST CODE
Introduction

We have currently some test code / binaries that run a simulation of a beam of particles and their interactions with a simple detector. It involves a binary which runs a .g4 script with information about the particular simulation to be done (mainly properties about the simulated particles and the detector).
The Simulation

The simulation runs 5000 times the following event: the interaction of one single particle with a detector involving its propagation, interaction and detection. The detector is made of several slides of two different materials, one of them sensitive. We can customize the type of particle, its energy, momentum, direction as well as the detector dimensions and materials. We can also customize the physics model (there are 5 different ones that we can choose).

It's important to notice that the time to perform each simulation is more or less proportional to the energy we select for the incoming particles. This time also scales approximately linearly with the number of events we simulate. It also depends on the used physics model we choose.

The code is written in C++ and most of the times we will care about modifying a single file. We need Geant4 and the CLHEP libraries to compile the binary but if we compile it statically, we can make it dependent only on the C++ libraries. To compile the binaries we just need to go to the StatAcceptTest directory, set the right environment variables in the buildSetup.sh file and run gmake to execute the Makefile. It's very simple and it does not use external programs like autoconf or automake.

The binary sends the output to the screen. The output was originally HBOOK histograms, but it has been modified to produce just plain text to ease portability to Windows. Its format is defined in the StatAccepTestAnalysis.cc file. To address Windows and BOINC constraints, we had to modify the code to write the results directly into a predefined file rather than redirect the standard output as originally done in Linux. The main results are deposited energy and momentum, and they are divided in transversal (perpendicular to the direction of the incident particle) and longitudinal (parallel). The default Geant4 unit is the MeV. The Geant4 random number generator uses also a time variable so each time we run the simulation we should have different results.
Compatibility

The current binary should work on any Linux version where the gcc libraries compatible with version 3 are installed.

In particular, it was compiled on SLC3 (Scientific Linux CERN version 3.05) using gcc 3.2.3. It also works in Debian 3.0 with gcc 3.3.5 (executed under the CoLinux environment)

 This SLC3 binary doesn't work on SLC4 as gcc 3.4.3 is the default compiler. Installing gcc 3.2.3 on SLC4 provides the missing libraries and makes it work (the test was done also under the CoLinux environment).
GEANT4 BOINCIFICATION

The current stable version of the BOINC client libraries is taken from the CVS server:
cvs -d :pserver:anonymous:@alien.ssl.berkeley.edu:\

/home/cvs/cvsroot checkout -r stable boinc

The versions of required packages for building BOINC on SLC3 are too old. Specific versions (autoconf-2.59-3, automake-1.9.5-1 and curl-7.14) were generated. The SSL libraries on SLC3 are not at the recommended level but nevertheless did not cause any problem. For curl, it was necessary to install the newer version in a non-system directory because just replacing the old version would break many other applications. The newer curl programs were placed to be found first by the BOINC generation procedure. As BOINC client and libraries are built statically, curl libraries are not needed at execution time.

The Geant4 programs were built statically, but they still depend on some system shared libraries like the standard C++ libraries, libc, libm, the dynamic loader, etc. The dependencies are shown below:

$ ldd mainStatAccepTest

libstdc++.so.5 => /usr/lib/libstdc++.so.5 (0x0019b000)

libm.so.6 => /lib/tls/libm.so.6 (0x00111000)

libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x002a4000)

libpthread.so.0 => /lib/tls/libpthread.so.0 (0x00266000)

libc.so.6 => /lib/tls/libc.so.6 (0x00b1d000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x00d62000)
These libraries are the default SLC3 and gcc 3 libraries and these induces the compatibility restrictions mentioned above.

Input to the program is a g4 macro and no terminal interaction is required. Thus, this program fits nicely into the BOINC framework. To complete the integration in BOINC, the Geant4 test code was slightly modified to always accept a fixed file name as g4 input script. Thus, the g4 script is provided with the job by the server (and it can be different for different jobs).

The standard output where results are written is redirected to a file with fixed name (my_stdout.txt) using C++ construct shown below:

std::streambuf* cout_sbuf = std::cout.rdbuf();
 // save original sbuf

std::ofstream fout(resolved_name_out);

std::cout.rdbuf(fout.rdbuf());
 //redirect 'cout' to a 'fout'

 (...)

std::cout.rdbuf(cout_sbuf);
 // restore the original stream buffer

Other methods were considered. It is possible to overload the G4 descriptors G4cout and G4cin but because of the lack of documentation, the idea was abandoned. One could also set boinc_init_diagnostics() flags to force the BOINC system to put the standard output in the given file but this is neither well documented and could not be made to work. fopen() calls related to the data files needed by the Geant4 binary other than for the input file were not touched. In fact, a lot of fstream C++ style IO is present in the code and are not trivial to wrap. What was done, from within the C++ program, was to set environment variables that make sure that all the needed files are under the current directory.

Some BOINC calls have to be inserted in the code: boinc_init() and boinc_finish() as prologue and epilogue, boinc_zip() to package, compress and decompress the input and output data files. Compression is used to optimise file transfers and the boinc_zip() function makes the program independent of the zip program on Windows and any other BOINC supported platform. These calls to BOINC internals are resolved by adding the BOINC libraries and POSIX threads in the GEANT4 Makefile.
INCFLAGS += -I/test/boincclient/install/include

LDFLAGS += -L/test/boincclient/install/lib

LDLIBS += -lboinc_api -lboinc

CXXFLAGS += -pthread

The order in which the BOINC libraries are inserted in the Makefile is relevant. Wrong ordering leads to unresolved references.

The results, output of the Geant4 test code, contains a line informing about the time needed to perform the simulation (user, real and system time) like
 Number of events processed : 10

 User=10.48s Real=11.07s Sys=0.05s

Thus, different jobs always have different results, even with the same seed, just because of that line. In BOINC, it is desirable that 2 identical jobs send back identical results. In BOINC, an important principle is redundancy: the same job is sent to 2 or more clients. This allows to check if the results are correct. BOINC uses any machine in the world provided they were attached to the project and some of them may be in a bad state leading to incorrect results and some other machines may never send back results. The offending line in the GEANT4 output is generated by line 236 of G4RunManager.cc:

{ G4cout << " Number of events processed : "
 << n_event << G4endl; } // line 235
G4cout << " " << *timer << G4endl; // line 236

The solution was then to just comment out the line 236 in the source file.
PORTING TO WInDows

As suggested by the GEANT4 documentation in

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/InstallationGuide/html/PCMachines/pcMachines.html
the Cygwin POSIX environment from http://www.cygwin.com was installed so that we could use UNIX tools to manage the code, such as

· make.exe as a make tool

· g++.exe as a tool to analyse source file dependencies and create dependency (.d) files

· Several other UNIX tools like cp, mv, rm, touch...

At the same time a recipe is provided by the GEANT4 team to be able to use the Microsoft Visual C++ compiler in this environment. The recipe in question consists of adding to the cygwin.bat start-up file of Cygwin32 all the MS DOS commands found in the file vcvars32.bat provided in MS Visual C++ (in the VC++ .NET compiler installation directory and usually located inside the Common7/Tools directory). This sets the environment for MS Visual C++, i.e. set the paths to libraries, include files, and executables for MS Visual C++.

In our experience, the Cygwin startup /cygwin.bat appeared from Windows in c:\cygwin\cygwin.bat and the path to the VC++ script was the following
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\Tools\vsvars32.bat
This way of working could be very interesting for other BOINC projects as it allows you to produce pure Windows executables while using UNIX tools to manage your code.

CLHEP 1.9.2.1 for VC++ 7.1 was downloaded from
http://proj-clhep.web.cern.ch/proj-clhep/DISTRIBUTION/clhep-1.9.html
GEANT4 was installed as described in the doc in

http://geant4.web.cern.ch/geant4/G4UsersDocuments/UsersGuides/InstallationGuide/html/UnixMachines/unixMachines.html
We had to set the following environment variables:
G4SYSTEM=WIN32-VC

CLHEP_BASE_DIR=c:/local/dirLHCAtHome/clhep-1.9.2.1-win32-vc71

before running make from $G4INSTALL/source. This builds one library for each "leaf" category (maximum library granularity) and automatically produces a map of library use and dependencies.

Then we have to run
make global
in order to build global libraries, one for each major category

The hadronic physics lists were compiled by doing
cd $G4INSTALL/physics_lists/hadronic; make

Once the Geant4 libraries were built, we were able to make the Release Test program. To do so the buildSetup.sh setup script had to be edited as follows

· Change G4SYSTEM from Linux-g++ to WIN32-VC

· Change CLHEP_BASE_DIR to point to the CLHEP that was downloaded

· Change CLHEP_LIB from CLHEP to libCLHEP-1.9.2.1.lib. CLHEP is the UNIX name. Although the default Windows name is CLHEP.lib, this name appeared only as a broken symbolic link.

· Comment out GUI_USE_TCSH because this option is not supported in Windows.

· Change G4WORKDIR from $PWD to the explicit directory in Windows syntax: c:/local/dirLHCAtHome/StatAccepTest, this is because $PWD in a Cygwin bash shell gives the path as /cygdrive/c/local/dirLHCAtHome/StatAccepTest and this syntax is not understood by the Microsoft compiler.

We also had to add the time.h include file to mainStatAccepTest.cc to be able to use the time() function.

To port the program to BOINC environment the same code changes as in Linux were done. Additionally the referenced BOINC include and source files had to be added to the project. For instance to find boinc_win.h we would do

cd /cygdrive/c/local/dirLHCAtHome/boinc

du -a |grep boinc_win

Or to find were md5_init is defined or referenced

cd /cygdrive/c/local/dirLHCAtHome/boinc

grep -r md5_init *

The source files moved to the project were taken into account as dependencies for compilation and linking provided that the .C or .c extension is changed to .cc.

As the right versions of autoconf, automake, Curl, SSL, etc. were available in the Cygwin environment; we tried to use the _autosetup program to automate the porting and configuration for Windows. Unfortunatelly configure did not work because it could not find the SSL libraries and it insisted in using g++. We later found that this is a know bug in the Cygwin environment. When this bug is fixed _autosetup would allow us to build "real" libraries rather than copying the relevant source files thus saving a lot of time.

Although most of the code worked without change, a nasty problem was found in the hostinfo.h BOINC header file. There there was a reference to a Windows system type
// handle to DLL for user idle
extern HINSTANCE g_hIdleDetectionDll;
that was given syntax errors until we prefixed with
#include <Windows.h>

However, this produced a clash of the Windows system type PSIZE defined in
C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\ PlatformSDK\Include\WinDef.h

With the GEANT4 type defined in
$G4INSTALL/source/processes/hadronic/cross_sections/ include/G4HadronCrossSections.hh

Fortunately we could remove the clash modifying WinDef.h as follows
#ifndef G4VERBOSE

typedef struct tagSIZE

{

 LONG cx;

 LONG cy;

} SIZE, *PSIZE, *LPSIZE;

#else

typedef struct tagSIZE

{

 LONG cx;

 LONG cy;

} SIZE, *LPSIZE;

#endif

We also had to add

LDFLAGS += Winmm.lib

to the GNUmakefile in order to link to the Windows system multimedia library to resolve the timeSetEvent() and timeKillEvent() calls used in boinc_api.cc. These calls are described in
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/multimed/htm/_win32_timesetevent.asp
BOINC TEMPLATES

A work unit template and a result template have been created in the templates directory under the main BOINC server installation directory. The templates are plain text files containing XML tags. We created the following work unit template:

<file_info>

 <number>0</number>

</file_info>

<file_info>

 <number>1</number>

</file_info>

<workunit>

 <file_ref>

 <file_number>0</file_number>

 <open_name>run.g4</open_name>

 </file_ref>

 <file_ref>

 <file_number>1</file_number>

 <open_name>seed.txt</open_name>

 </file_ref>

</workunit>

This template gives BOINC the list of files that your application will need to be executed. In particular, the files that change in each job execution have to be specified. Other files required by your binary that are the same for all job executions are better placed in the apps directory to prevent them to be downloaded each time.

In our work unit the run.g4 script is used. It gives details about the type and energy of the simulated particle and about the materials of the detector, among other things. A seed.txt file is also sent with the seed to be used for the simulation. It's important that all the job instances use the same seed because BOINC may send the same job to different machines and verify the results by comparing them, so the results are expected to be the same for the same job.

Please note that the syntax of the work unit templates is not well documented. In particular, it is not documented how to include more than one file. In order to do that, the file number has to be written under different file_info tags but you have to write the file name corresponding to the file number under the same workunit tag and in different file_ref tags. Failing to specify it this way produces errors mainly described by an error code (like -161) that is not documented either.
The result template used is the following:

<file_info>

 <name><OUTFILE_0/></name>

 <generated_locally/>

 <upload_when_present/>

 <max_nbytes>102400</max_nbytes>

 <url><UPLOAD_URL/></url>

</file_info>

<result>

 <file_ref>

 <file_name><OUTFILE_0/></file_name>

 <open_name>my_stdout.txt</open_name>

 </file_ref>

</result>

It specifies the name (and number) of the file we want to be sent by the client as result. It's important to add the tags <generated_locally/> and <upload_when_present/>.
Please note that BOINC will find the output file only if we "resolve" its name inside the application's code (as well as the input ones). This means that the output file (empty, of course) has to be sent with the binary.
CONCLUSIONs
We demonstrated that there is no major technical obstacle to running a simple GEANT4 simulation in the BOINC environment. In particular there were no problems with shared libraries, and the Windows port was straightforward although there were several minor problems that were solved successfully.
 We are now considering more realistic models that could be used by LHC experiments such as the ATLAS Fast Simulation (ATLFAST). We have already ported ATLFAST 0.02.22 (in FORTRAN) to use the PYTHIA 6.2 event generator and demonstrated it with a real physics case. We are currently looking into newer versions in C++.
References

[1]
http://lhcathome.cern.ch/.

[2]
http://boinc.berkeley.edu/.
[3]
http://geant4.web.cern.ch/geant4/.

