WEB SERVICES WITH GRIDSITE AND C/C++/SCRIPTS
A. McNab, S. Kaushal, University of Manchester, UK

Abstract

GridSite provides a Web Service hosting framework for
services written as native executables (eg in C/C++) or scripting
languages (such as Perl and Python.) These languages are of
particular relevance to HEP applications, which typically have
large investments of code and expertise in C++ and scripting
languages.

We describe the Grid-based authentication and authorization
environment that GridSite provides, removing the need for
services to manipulate Grid credentials (such as X.509, GSI and
VOMS) themselves. We explain how the GRACE model
(GridSite - Apache - CGI - Executables) allows Unix-account
sandboxing of services, and allows sites to provide hosting of
multiple services provided by third-parties (such as HEP
experimental collaborations) on the same server. Finally, we
propose scenarios which combine GridSite's authorization
model with service sandboxing to allow remote deployment of
services.

INTRODUCTION

The GridSite Project[1] has developed a security toolkit,
libgridsite, and a set of extensions to the Apache[2] web server
to support Grid security credentials, authorization policies based
on them, and read/write file operations.

In this paper, we describe how that framework can be used to
build Web Services, which are protected by Grid credenitals and
access policies, and which can be written in any of the languages
supported by Apache's Common Gateway Interface (CGI) — that
is, binary executables derived from C or C++, and all of the
major scripting languages, including Perl and Python.

Combined with a service sandboxing model we have developed
using temporary Unix accounts, we refer to this Web Services
framework as GRACE, for GridSite — Apache — CGI -
Executables.

GRID CREDENTIALS

The GridSite extensions to Apache take the form of a
loadable module, mod_gridsite, which is dynamically linked to
the Apache executable at server startup time. This model gives
full access to all of the Apache's internal data structures, and in

particular to the mod_ssl module which processs the SSL/TLS
encryption layer of HTTPS connections.

This is of particular important in Grid applications, where
clients authenticate using X.509[4] certificates, either as
conventional certificates possessed by users and issued by
Certificate Authorities, or as GSI Proxy Certificates[5], created
by users and given to agents or remote jobs.

Apache's mod_ssl correctly extracts the user identify — the
Distinguished Name or DN — from standard X.509 certificates,
and mod_gridsite adds support for GSI Proxies. This is done by
dynamically modifying the SSL callbacks, to wrap the standard
processing in mod_gridsite functions which can parse GSI
Proxy certificates. This stage is also used to look for the
presence of VOMS|[6] attribute certificates.

Once mod_gridsite has these credentials parsed and verified
using their cryptographic signatures, they are made available to
Apache and CGI programs as environment variables. This
follows the CGI convention for transmitting “out of band”
information to CGI programs in the Unix process environment.

ACCESS CONTROL

mod_gridsite provides an internal access policy evaluation
engine, and both the results of this evaluation and the raw
credential values are available to CGI services for any
additional fine grained access control they wish to apply.

Policies are specified in GridSite's XML-based Grid Access
Control Language, or in an equivalent subset of XACML[7].
They can require clients to possess a full X.509 certificate or
GSI proxy with a specific DN; a VOMS attribute certificate
with specific groups, roles or capabilities; that the client's DN is
a member of a given DN List group, downloaded
asynchronously and cached, from a VO-LDAP or VOMS HTTP
server; or that the client has a specific IP address or subnet.

Policies can involve multiple credential requirements (that is, a
logical AND), or alternative credential requirements (a logical
OR.) Permissions may be granted but also denied on the basis of
the requirements specified (a logical NOT.)

The default set of permissions (read, list, write, execute and
admin) are appropriate for file access and the exeuction of CGI
programs on web servers.



CGI EXECUTION

Using the Apache/GridSite framework, Web Services are
implemented as binary executables or scripts, and the request
and response are communicated via the CGI protocol, using the
Unix stdin and stdout of the process.

By default, Apache will execute CGI programs as the Unix user
the server process is running as, such as “apache”, which will
typically have write access to many files associated with the web
server, including executables. This imposes a very coarse-
grained security policy, as anyone with access to the apache
account, including the ability to supply CGI executables, can
alter any of the web server files.

Apache provides a mechanism for running CGI programs as
different Unix users, using a setuid binary, suexec. In this case,
the CGI program is run as the user who owns it, and it is
relatively straightforward to manually administer a small
number of users and grant them Unix command-line or ftp
access to the server.

Although this provides for a degree of separation between
owners of different groups of files and servers, it is not
sufficiently flexible to implement the Grid ideal of virtualised
use of resources, which can be used by users who have no
previous association with the resource, and whose access rights
are defined dynamically.

GSEXEC

To address this
replacement for suexec, called gsexec. This is backwards-

shortcoming, we have developed a
compatible with suexec, but has additional configuration options
which can be set via the Apache configuration file.

Gsexec runs CGI programs as Unix users which are different
from the main apache user account, but instead of being static
accounts which have to be administered manually, temporary
accounts are allocated from a pool of Unix users dedicated to
the gsexec system.

Gsexec has two modes of operation, depending on how pool
accounts are associated with a given request. Either the pool
account is allocated to the client's certificate DN when it is first
seen by the server (unless the account is found to be no longer
used, and then recycled) — in this mode, subsequent requests
from the same client are allocated to the same pool account; or
the pool account is allocated on the basis of the Unix filesystem
directory which corresponds to the URL of the request.

In the first
permissions prevent sessions associated with different clients

mode, the Unix filesystem and process

from interfering with each other: even if CGI services would
otherwise allows different clients to invade each other's privacy

or damage each other's files or shared memory segments, then
Unix permissions will prevent that vulnerability in this mode.

In the second mode, the service author may maintain shared
files, shared memory segments and database sessions which are
accessible irrespective of the client making the request. This
mode not only allows clients to access the service without
manual granting of access rights — they can, for instance, have
access rights as members of a group — but also allows service
owners to be granted write access to CGI directories on the web
server, purely on the basis of access policies. An unused Unix
pool account will then be allocated to the group of services and
files in that directory.

This mode allows the remote deployment of services by
service owners, using the GridSite file server features to upload
the service, and then gsexec to execute the service executable or
script.

SOAP AND WEB SERVICES

CGI scripts or executables must accept and generate SOAP
messages to qualify as Web Services. Libraries and modules to
provide this are available for all of the major programming
languages.

The GridSite distribution includes one Web Service, a GSI
delegation service, and this is a useful example of how Web
Apache/GridSite
framework: the gridsite-delegation.cgi service is written in C,

Services can be implemented in the
and uses the gSOAP[8] package to provide parsing of SOAP
messages, and to generate the code framework from the WSDL

specification of the service.

CONCLUSION

GridSite provides a flexible framework for managing access to
web servers using common Grid credentials. This system can
now be used for providing secured Web Services, with multiple
client sessions or multiple service owners. In these scenarios,
Unix account permissions are used to isolate different
authorization domains. Crucially, all of these access rights are
determined dynamically, using policy files and pools of

temporary Unix accounts.

ACKNOWLEDGEMENTS

This work was funded by the UK Particle Physics and
Astronomy Research Council, as part of the GridPP project and
the e-Science Studentships programme.



(1]
(2]
(3]

(4]

(3]

REFERENCES

http://www.gridsite.org/.

http://www.apache.org/.
IETF RFC 2246, “The TLS Protocol”,
http://www.ietf.org/rfc/rfc2246.txt

IETF RFC 3280, “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile”,

http://www .ietf.org/rfc/rfc3280.txt

IETF RFC 3820, “Internet X.509 Public Key Infrastructure

(PKI) Proxy Certificate
http://www.ietf.org/rfc/rfc3820.txt

Profile”,

[6]

[7]

[8]

R. Alfieri et a., Managing Dynamic User Communities in
a Grid of Autonomous Resources, TUBTOO05 - Proceedings
of CHEP 2003, 2003.

The XACML Committee,
http://www.oasis-open.org/committees/xacml/

The gSOAP framework,
http://www.cs.fsu.edu/~engelen/soap.html



