
The Performance Analysis of Linux
Networking – Packet Receiving

Wenji Wu, Matt Crawford
Fermilab

CHEP 2006
wenji@fnal.gov, crawdad@fnal.gov

2

Topics
Background
Problems
Linux Packet Receiving Process

NIC & Device Driver Processing
Linux Kernel Stack Processing

IP
TCP
UDP

Data Receiving Process
Performance Analysis
Experiments & Results

3

1. Background
Computing model in HEP

Globally distributed, grid-based
Challenges in HEP

To transfer physics data sets – now in the multi-petabyte (1015

bytes) range and expected to grow to exabytes within a decade –
reliably and efficiently among facilities and computation centers
scattered around the world.

Technology Trends
Raw transmission speeds in networks are increasing
rapidly, the rate of advancement of microprocessor
technology has slowed.
Network protocol-processing overheads have risen
sharply in comparison with the time spend in packet
transmission in the networks.

4

2. Problems

What, Where, and How are the bottlenecks
of Network Applications?

Networks?
Network End Systems?

We focus on the Linux 2.6 kernel.

5

3. Linux Packet Receiving Process

6

Linux Networking subsystem: Packet
Receiving Process

Stage 1: NIC & Device Driver
Packet is transferred from network interface card to ring buffer

Stage 2: Kernel Protocol Stack
Packet is transferred from ring buffer to a socket receive buffer

Stage 3: Data Receiving Process
Packet is copied from the socket receive buffer to the application

NIC
Hardware

Network
Application

Traffic SinkRing Buffer
Socket RCV

BufferSoftIrq
Process

Scheduler

DMA IP
Processing

TCP/UDP
Processing

SOCK RCV
SYS_CALL

Kernel Protocol Stack

TrafficSource

Data Receiving ProcessNIC & Device Driver

7

NIC & Device Driver Processing

Layer 1 & 2 functions of the OSI 7-layer network Model
Receive ring buffer consists of packet descriptors

When there are no packet descriptors in ready state, incoming packets will be discarded!

...
Packet Packet

Packet

Packet
Descriptor

Ring Buffer

...

DMA

1
24 3

8

7

6
5

...

NIC Interrupt
Handler

Raised softirq

Poll_queue (per CPU)

NIC1

SoftIrq

x

N
IC

1

Netif_rx_schedule()

Hardware
Interrupt

check

1

2

3

4

dev->poll

Net_rx_action

5

Higher Layer Processing
6

alloc_skb()

Refill

1. Packet is transferred from NIC to
Ring Buffer through DMA

2. NIC raises hardware interrupt

3. Hardware interrupt handler schedules
packet receiving software interrupt (Softirq)

4. Softirq checks its corresponding CPU’s
NIC device poll-queue

5. Softirq polls the corresponding NIC’s
ring buffer

6. Packets are removed from its receiving
ring buffer for higher layer processing;
the corresponding slot in the ring buffer
is reinitialized and refilled.

NIC & Device Driver Processing Steps

8

Kernel Protocol Stack – IP

IP processing
IP packet integrity verification
Routing
Fragment reassembly
Preparing packets for higher layer processing.

9

Kernel Protocol Stack – TCP 1
TCP processing

TCP Processing Contexts
Interrupt Context: Initiated by Softirq
Process Context: initiated by data receiving process;

more efficient, less context switch

TCP Functions
Flow Control, Congestion Control, Acknowledgement, and Retransmission

TCP Queues
Prequeue

Trying to process packets in process context, instead of the interrupt
contest.

Backlog Queue
Used when socket is locked.

Receive Queue
In order, acked, no holes, ready for delivery

Out-of-sequence Queue

10

Kernel Protocol Stack – TCP 2

TCP Processing- Process context

Application Traffic Sink

Ringbuffer

Backlog

IP
Processing

Sock
Locked?

Y

Receiving
Task exists?

Y

PrequeueN

tcp_v4_do_rcv()

N

InSequence

Y

N

N

N

Out of Sequence
Queue

Receive
Queue

TCP
Processing

NIC
Hardware

Traffic Src

DMA

Copy to iovec?

Copy to iovec?

Y

Y

Fast path?

Y

N

Slow path

TCP Processing- Interrupt context

Except in the case of prequeue overflow, Prequeue and
Backlog queues are processed within the process context!

Copy to iovReceive Queue
Empty?

Y

N

Prequeue
Empty?

Backlog
Empty?

Y

tcp_prequeue_process()

release_sock()

sk_backlog_rcv()

iov

return / sk_wait_data()

User Space

Kernel

sys_callentry

Application

data

tcp_recvmsg()

11

Kernel Protocol Stack – UDP

UDP Processing
Much simpler than TCP
UDP packet integrity verification
Queue incoming packets within Socket
receive buffer; when the buffer is full,
incoming packets are discarded quietly.

12

Data Receiving Process
Copying packet data from the socket’s
receive buffer to user space through struct
iovec.
Socket-related systems calls
For TCP stream, data receiving process
might also initiate the TCP processing in
the process context.

13

4. Performance Analysis

14

Notation

15

Mathematical Model

Token bucket algorithm models NIC & Device Driver
receiving process
Queuing process models the receiving process’ stage 2 & 3

Ring Buffer

Refill Rate Rr

T

T

Socket i
RCV Buffer

3 12

RT Rs Rdi

Total Number of
Packet Descriptors

D

2 Packet
Discard

3 1

Ri

RT’

Ri’

Rsi

To other sockets

16

The reception ring buffer is represented as the token bucket with a depth of D tokens.
Each packet descriptor in the ready state is a token, granting the ability to accept one
incoming packet. The tokens are regenerated only when used packet descriptors are
reinitialized and refilled. If there is no token in the bucket, incoming packets will bek
discarded.

To admit packets into system without discarding, it should have:

0>∀t ,
⎩
⎨
⎧

=
>

=
0)(,0

0)(),(
)(' tA

tAtR
tR T

T (1)

0>∀t , 0)(>tA (2)

A(t) = D− RT ' (τ)dτ
0

t∫ + Rr (τ)dτ
0

t∫ , 0>∀t (3)

NIC & Device Driver might be a potential bottleneck!

Token Bucket Algorithm – Stage 1

17

Token Bucket Algorithm – Stage 1

To reduce the risk of being the bottleneck, what measures could
be taken?

• Raise the protocol packet service rate
• Increase system memory size
• Raise NIC’s ring buffer size D

• D is a design parameter for the NIC and driver.
• For an NAPI driver, D should meet the following condition to

avoid unnecessary packet drops:

maxmin * RD τ≥ (4)

18

Queuing process – Stage 2 & 3

)()(' tRtR ii ≤ and)()(tRtR ssi ≤ (5)

Bi(t) = Rsi(τ)dτ
0

t∫ − Rdi(τ)dτ
0

t∫ (6)

QBi − Rsi (τ)dτ
0

t∫ + Rdi(τ)dτ
0

t∫ (7)

For stream i; it has

It can be derived that:

For network applications, it is desirable to raise (7)

For UDP, when receive buffer is full, incoming UDP packets are dropped;
For TCP, when receive buffer is approaching full, flow control would throttle
sender’ data rate;

A full receive buffer is another potential bottleneck!

19

Queuing process – Stage 2 & 3

What measures can be taken?
Raising socket’s receive buffer size

Configurable, subject to system memory limits

Raising
Subject to system load and the data receiving process’ nice
value
Raise data receiving process’ CPU share

Increase nice value
Reduce system load

iQB

)(tRdi

Cycle n

Running
expired

0 t1 t2

Running
expired

t3 t4

Cycle n+1

⎩
⎨
⎧

<<
<<

=
21

1

,0
0,

)(
ttt
tt

tRdi

D
 (8)

20

5. Experiments & Results

21

Experiment Settings

Cisco 6509 Cisco 6509

Receiver
Sender

10G

1G 1G

 Sender Receiver

CPU Two Intel Xeon CPUs (3.0 GHz) One Intel Pentium II CPU (350 MHz)
System Memory 3829 MB 256MB

NIC Tigon, 64bit-PCI bus slot at
66MHz, 1Gbps/sec, twisted pair

Syskonnect, 32bit-PCI bus slot at 33MHz,
1Gbps/sec, twisted pair

Sender & Receiver Features

Fermi Test Network

Run iperf to send data in one direction between two computer systems;
We have added instrumentation within Linux packet receiving path
Compiling Linux kernel as background system load by running make –nj
Receive buffer size is set as 20M bytes

22

Experiment 1: receive ring buffer

Total number of packet descriptors in the reception ring buffer of the NIC is 384

Receive ring buffer could run out of its packet descriptors: Performance Bottleneck!

Running out
packet descriptors

Figure 8

TCP throttles rate
to avoid loss

23

Experiment 2: Various TCP Receive Buffer Queues

Zoom in

Background Load 0 Background Load 10

Figure 9 Figure 10

24

Experiment 3: UDP Receive Buffer Queues

UPD Receive Buffer Queues
Figure 11

UDP receive Buffer
Committed Memory

Figure 10

The experiments are run with three different cases:
(1) Sending rate: 200Mb/s, Receiver’s background load: 0;
(2) Sending rate: 200Mb/s, Receiver’s background load: 10;
(3) Sending rate: 400Mb/s, Receiver’s background load: 0.

Transmission duration: 25 seconds; Receive buffer size: 20 Mbytes

Receive livelock problem!

When UDP receive buffer is full, incoming
packet is dropped at the socket level!

Both cases (1) and (2) are within receiver’s handling limit. The receive buffer is generally empty
The effective data rate in case (3) is 88.1Mbits, with a packet drop rate of 670612/862066 (78%)

25

Experiment 3: Data receive process

0

50

100

150

200

250

300

350

BL0 BL1 BL4 BL10

Background Load

TC
P

B
an

dw
id

th
 M

bp
s/

s

nice = 0

nice = -10

nice = -15

Sender transmits one TCP stream to receiver with the transmission duration of 25
seconds. In the receiver, both data receiving process’ nice value and the background
load are varied. The nice values used in the experiments are: 0, -10, and -15.

26

Conclusion:

The reception ring buffer in NIC and
device driver can be the bottleneck for
packet receiving.
The data receiving process’ CPU share is
another limiting factor for packet receiving.

27

References

[1] Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones, Jean-Philippe Martin-Flatin, and

Yee-Ting Li, "A Map of the Networking Code in Linux Kernel 2.4.20", March 2004.
[2] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in an interrupt-driven kernel”,

ACM Transactions on Computer Systems, 15(3): 217--252, 1997.
[3] Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Muller, and Marc Bechler, The Linux

Networking Archetecture – Design and Implementation of Network Protocols in the Linux Kernel,
Prentice-Hall, ISBN 0-13-177720-3, 2005.

[4] www.kernel.org
[5] Robert Love, Linux Kernel Development, Second Edition, Novell Press, ISBN: 0672327201, 2005.
[6] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, Linux Device Drivers, 3rd Edition,

O’Reilly Press, ISBN: 0-596-00590-3, 2005.
[7] Andrew S. Tanenbaum, Computer Networks, 3rd Edition, Prentice-Hall, ISBN: 0133499456, 1996.
[8] Arnold O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications,

2nd Edition, Academic Press, ISBN: 0-12-051051-0, 1990.
[9] Hoskote, Y., et.al., A TCP offload accelerator for 10 Gb/s Ethernet in 90-nm CMOS, Solid-State

Circuits, IEEE Journal of Volume 38, Issue 11, Nov. 2003 Page(s):1866 – 1875.
[10] Regnier, G., et.al., TCP onloading for data center servers, Computer, Volume 37, Issue 11, Nov.

2004 Page(s):48 - 58
[11] Transmission Control Protocol, RFC 793, 1981
[12] http://dast.nlanr.net/Projects/Iperf/

	The Performance Analysis of Linux Networking – Packet Receiving
	Topics
	1. Background
	2. Problems
	3. Linux Packet Receiving Process
	Linux Networking subsystem: Packet Receiving Process
	NIC & Device Driver Processing
	Kernel Protocol Stack – IP
	Kernel Protocol Stack – TCP 1
	Kernel Protocol Stack – TCP 2
	Kernel Protocol Stack – UDP
	Data Receiving Process
	4. Performance Analysis
	Notation
	Mathematical Model
	Token Bucket Algorithm – Stage 1
	Token Bucket Algorithm – Stage 1
	Queuing process – Stage 2 & 3
	Queuing process – Stage 2 & 3
	5. Experiments & Results
	Experiment Settings
	Experiment 1: receive ring buffer
	Experiment 2: Various TCP Receive Buffer Queues
	Experiment 3: UDP Receive Buffer Queues
	Experiment 3: Data receive process
	Conclusion:
	References

