

Design and Performance of the CMS pixel detector barrel modules

11th Workshop on Electronics for LHC and future Experiments 12.-16. September 2005, Heidelberg, Germany

> **Christoph Hörmann** (Paul Scherrer Institut/University of Zürich)

> > • CMS pixel barrel module

- laboratory measurements (crosstalk)
 - beam test and preliminary results

conclusions

CMS pixel detector

Christoph Hörmann

CMS

components of the pixel barrel module

- <u>Kapton cable</u>: transmits control signals from endring print to module; 21 signal traces; 300 μm pitch; length 10 cm to 36 cm
- <u>Power cable:</u> six wires Al ribbon; V_{ana}, V_{dig}, V_{Bias}, GND
- High Density Interconnect (HDI): distributes control signals and power to ROCs and TBM; capacitors for decoupling; 3 layer design (Copper 7 μm and Kapton 10 μm)

bump bonding technique

 <u>Base Plate:</u> for mounting module on cooling and supply structure; two stripes of 250 μm Si₃N₄; CTE match to Si

- <u>Sensor:</u> 'n-in-n' type Si sensor on DOFZ material; processed in p-spray technique; segmented into pixels; thickness 285 μ m; high voltage robustness up to 600 V; radiation hardness tested up to fluence of ~ 10¹⁵ n_{eq}/cm²
- <u>Read Out Chip (ROC):</u> 16 ROC PSI46V2; processed in 0.25 μm technology; 5 metal layers + MIMCAP; continuous data taking and simultaneous readout operation; zero suppression; radiation tolerant design (10 MRad/year for innermost layer @ high luminosity 10³⁴ cm⁻² sec⁻¹)

11th Workshop on Electronics for LHC and future Experiments

pixel:

Christoph Hörmann

11th Workshop on Electronics for LHC and future Experiments

Paul Scherrer Institut

^{12.-16.} September 2005 5

12.-16. September 2005

6

- <u>explanation of the crosstalk measurement:</u>
 - all ROCs get calinject1 (# pixels are enabled)
 - all ROCs have latency1 apart from one ROC, which has latency2 (latency2>latency1)
 - no appropriate trigger is given for latency1, but an appropriate trigger is given for latency2
 - ◊ just ROC with latency2 is read out (one testpixel enabled ⇒ noise threshold)

11th Workshop on Electronics for LHC and future Experiments

\$ should see crosstalk caused by column drain in other ROCs

- <u>height of the initial spike just after charge injection (positive pickup):</u>
 - grows with # pixels enabled on all ROCs
 - independent of VIColor (= double column notification)

- investigation of the negative pickup:
 - move testpixel of **ROC** with latency2 away from noise level by giving a second calinject2

column drain induced threshold shift 4

- <u>baseline for column drain induced threshold</u> <u>shifts:</u>
 - no pixels are enabled in all ROCs apart from one ROC with testpixel
 - first calinject generates no column drain

test scenario:

- 20 px/column * 52 columns
- all ROCs
 - different length of column drains visible
 - hegative pickup observable during column drain: ~2000 e⁻ (difference of ~ 50%)

measurement procedure is sensitive for cross talk

Christoph Hörmann

• investigation of the negative pickup depending on different # pixels are enabled in all ROCs:

more realistic scenario:

- 3 px/column * 6 columns (cluster)
- all ROCs

for realistic scenario negligible cross-talk <200 e⁻

Christoph Hörmann

11th Workshop on Electronics for LHC and future Experiments

read out induced threshold shift

look for crosstalk during read out of module:

• deterministic sequence

pickup cause threshold shift

- scan position of test cal and trigger of test chip over period of activity of the others (read out)
 - no significant pickup during
 - readout
 - data buffer-reset

Christoph Hörmann

11th Workshop on Electronics for LHC and future Experiments

- operate final modules under LHC (CMS) equivalent conditions before full production
 - track density up to 40 MHz/cm² (@ 4 cm layer and high luminosity 10³⁴ cm⁻² sec⁻¹)
 - first level trigger rate up to $\simeq 100 \text{ kHz}$
 - bunch structure (25 ns \triangleq 40 MHz)
 - continuous data taking and simultaneous readout operation
- **PSI** π **E1** beam line:
 - 300 MeV/c $\pi^+ \sim$ MIPs
 - variable intensity up to 100 MHz/cm²
 - **50 MHz** beam structure
 - operate module on synchronized 40 MHz clock
 - allow triggers only every 4^{th} bunch (CMS: ≥ 3 separation)
 - but no **B-Field**

beamtest setup

beamtest setup

Christoph Hörmann

11th Workshop on Electronics for LHC and future Experiments

ROC hitmap

- scintillator trigger used as telescope (2*2*2 mm³⁾
- flat illumination covers entire ROC/module
- triggered events should have hits in an area ~ scintillator size
- high intensity: many random coincidences

- superposition of 30k events
- intensity: 1 MHz/cm²
- two empty pixels in the trigger region
- one noisy pixel

module hitmap for 90°

- same run: 30k events
- intensity: 1 MHz/cm²
- beam covers entire module
- 16 ROCs: 160 * 416 pixels
- trigger image blurred by beam divergence

(color = pulse height)

270

280

290

300 310

260

250

Entries Nean x Nean y

800

600

400

200

observed tracks of secondary particles

Christoph Hörmann

110

100

90

80

70

60

module hitmap for 90°

- high intensity run:
 - 90k events
 - intensity: 47 MHz/cm²
 - trigger rate 18 kHz
- random rates (random coincidence)
- higher rates in edge pixels:
 - 2 * area of regular pixel

delay scan: vary system clock wrt beam

Christoph Hörmann

module: cluster charge for various angles

Christoph Hörmann

11th Workshop on Electronics for LHC and future Experiments

12.-16. September 2005 20

Paul Scherrer Institut

- intra-module crosstalk investigations:
 - evidence for crosstalk for simultaneous column drains in large fractions of a module
 - negligible crosstalk in realistic scenario
 - no crosstalk seen during readout
- beam test with final barrel module:
 - CMS pixel barrel module with final components operated in high rate beam ⇒ TBM05 & PSI46 v2 co-operate without evident problems
 - good time walk behavior, effective thresholds ~ 3-4ke⁻
 - improved analog readout works very well
 - analysis of high rate data not finalized
 - problems:
 - preliminary inefficiency results are inconsistent with previous beam test results (even for single ROC) ⇒ analysis in progress
 - PSI46 needs resets
 - brand-new DAQ/software, some bugs, impacts on results unclear
- ♦ follow-up beam test later this month with improved setup (telescope, ...)

