Radiation-Hard Optical link for the ATLAS Pixel Detector

Paul D. Jackson The Ohio State University

September 13th, 2005

K.E. Arms, K.K. Gan, M. Johnson, H. Kagan, R. Kass, A. Rahimi, C. Rush, S. Smith, R. Ter-Antonian, M.M. Zoeller <u>The Ohio State University</u>

> P. Buckholz, M. Holder, A. Roggenbuck, P. Schade, M. Ziolkowski <u>Universitaet Siegen, Germany</u>

Paul D. Jackson

Overview

- ATLAS pixel detector
- Pixel Opto-link system
- The VDC and DORIC
- BeO Optoboard
- Proton Irradiation studies
- Production status

Paul D. Jackson

LECC Heidelberg, September 2005.

3

ATLAS Pixel Detector

- Inner most tracking detector
- → Pixel size: 50µm x 400µm
- → ~ 100 million channels
- Barrel layers at r = 5.1 and
 12.3 cm
- Disks at z = 50 and 65 cm

2 disks

2 barrel layers

ATLAS Pixel Opto-link

- **VCSEL: Vertical Cavity Surface Emitting Laser diode**
- **VDC: VCSEL Driver Circuit**
- PIN: PiN diode
- **DORIC: Digital Optical Receiver Integrated Circuit**

Paul D. Jackson

Opto-link system design

- A simple and elegant solution for the pixel detector optolink
- Only 3 flavours of boards: B boards, left D and right D boards
- Modular design reduces complexity and is easier to build
- Problems have been tracked down relatively quickly
- Wirebonds encapsulated for ease of handling and protection against breakage due to vibrations.
- Optoboard construction has been fast (~7 months to complete)

VDC: VCSEL Driver Circuit

- Convert LVDS input signal into single-ended signal appropriate to drive VCSEL diode
- Output (bright) current: 0 to 20 mA controlled by external current I_{set}

- Standing (dim) current: ~1 mA improve switching speed
- Rise & fall times: 1 ns nominal for 40 MHz signals
- "On" voltage of VCSEL: up to 2.3 V at 20 mA for 2.5 V supply
- Constant current consumption!
- Use Truelight high-power oxide common cathode VCSEL array

DORIC: Digital Optical Receiver IC

Decode Bi-Phase Mark encoded (BPM) clock and command signals from PIN diode

Dummy cap.

Gnd

Input signal: 40-1000 µA

Extract: 40 MHz clock

Duty cycle: $(50 \pm 4)\%$

Total timing error: < 1 ns

Bit Error Rate (BER): < 10⁻¹¹ at end of life Use Truelight common cathode PIN array

Reset

Optoboard

- Converts: optical signal ⇔ electrical signal
- Contains 7 optical links, each link serving one pixel module
 - → Layer D: for outer barrel and disks, only one data link per module (228 boards).
 - Layer B: for inner barrel, two data links per module to accommodate for high hit occupancy (44 boards).
- Fabricated with BeO for heat management

Optoboard design and Layout

10

Paul D. Jackson

BeO Optoboard

Paul D. Jackson

Minimum PIN Current for No Bit Error

• Minimum PIN current for no bit error for all links active is significantly below the spec. of $40\mu A$

Paul D. Jackson

Optical Power

- Excellent optical power
 - Significantly above the minimum requirement of 500µW

Paul D. Jackson

Radiation Hardness Measurements of Opto-boards

- Use CERN's T7 beam (24 GeV Proton) for radiation hardness
 - T7 shuttle setup
 - Boards can be moved in and out of beam remotely for annealing
 - Real time testing of opto-board system using loop-back setup
 - Compare transmitted and decoded data
 - measure minimum PIN current for no bit errors
 - Measure optical power
- Last irradiation in June 2004
 - Four BeO opto-boards were irradiated with up to 32 Mrad
 - Received at OSU late 2004

Duty Cycle, Jitter and Rise/Fall times

- Jitter, and rise and fall times (not shown) are within the spec.
- Duty cycle slightly higher than 54% in three of the links.

Paul D. Jackson

Optical Power

- Some degradation in power after irradiation
 - Power is significantly above the minimum required $\sim 350 \,\mu W$
- Annealing (for VCSELs) recovers most of the lost power

Paul D. Jackson

PIN Current Threshold vs Dosage Dosage (Mrad) 4.4 10.5 16.8 23.8 30.6 32.3 50 anneal anneal anneal anneal anneal 40 Threshold (μA) 30 20 10 0 20 40 60 80 100 120 0 Time (h)

• PIN current thresholds for no bit errors remain constant

Paul D. Jackson

Proton Induced Bit Errors in PIN

- Bit error rate decreases with PIN current as expected
- Bit error rate: $\sim 3 \times 10^{-10}$ at 100 µA (1.4 errors/minutes)
 - DORIC spec: 10⁻¹¹
 - Opto-link error rate is limited by SEU

Paul D. Jackson

- Irradiation procedure: ~5 Mrad/day (10 hours) with annealing rest of the day
- Optical power decreases with dosage as expected
- Limited annealing recovers some lost power
- Still good power after 30 Mrad

Paul D. Jackson

Production Status

- We began optoboard production for ATLAS in February 2005.
- Very aggressive schedule to complete by September/October.
- Required producing ~10 optoboards/week at OSU (challenging).
- Within one week of starting production we turned everything off and moved to a new lab in a new physics building !!! Initial upheval but we now have a much larger lab space to work in.
- Our colleagues at Siegen will also be producing optoboards.

Production Challenges

- Making many boards in a week is driven by rigorous QA procedure
- → 72 hours burn-in at 50°C
- → 10 Thermal cylces between -25°C and 50°C (takes 18 hours)
- → Testing optical and electrical QA (takes ~1 day per board)
- → We use 2 environmental chambers and 2 additional ovens.
- Implimented an 'early shift' to extend the work day

Initial Optoboard production problem

- Thermal images revealed shorts to ground through the chips where large current was being drawn.
- Since this issue, we have implimented testing of ALL chips
- Haven't seen the problem since. Also test duty cyle of DORICs.
- Reworked the boards with failed chips, remove wirebonds, put on new chip. Paul D. Jackson LECC Heidelberg, September 2005.

Reworked boards

- We implimented a procedure to salvage the boards that were populated with failed chips.
- Strip wire bonds, stick a new chip on top of the failed one, bond to that chip, then QA (burn-in, thermal cycle etc).
- So far <u>we have recovered 12 boards in this way</u> and have seen no obvious problems with the reworks. ALL reworks are considered second class.

Two chips thickness seems to work fine!!

Optoboard production status

- Our rate started out slower than expected with more failures than anticipated.
- After ~6 weeks we reached target production rate.
- Maintained good yield for many weeks now.
- If we can continue at our current rate, and efficiency, reach production goal in Sept.
- Reworked failed boards to salvage them....and add them to the green curve.

Optoboard Production Status

Summary

- Optical link plays a crucial role in the ATLAS pixel detector
- Using BeO optoboard substrate for heat management
- VDC and DORIC chips have been tested extensively for radiation hardness.
- We are in production mode now and expect to complete all optoboards by the end of September.