
DCS Communication Software for the
ALICE TPC Front-End Electronics

M. Richter, J. Alme, S. Bablok, D. Larsen, D. Röhrich, K. Ullaland
Department of Physics and Technology, University of Bergen, Norway

Matthias.Richter@ift.uib.no

K. Røed
Faculty of Engineering, Bergen University College, Norway

R. Keidel, Ch. Kofler
Center for Technology Transfer and Telecommunications, University of Applied Science Worms, Germany

T. Alt, D. Gottschalk, V. Lindenstruth, H. Tilsner
Kirchhoff Institute of Physics, University of Heidelberg, Germany

U. Frankenfeld
GSI, Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Abstract
The ALICE Time Projection Chamber (TPC) is read out by
4356 Front-End Cards serving roughly 560000 channels. Each
channel has to be configured and monitored individually. As
one part of the overall controlling of the detector this task is
covered by the Detector Control System (DCS).

Since fault tolerance, error correction and system stability
in general are major concerns, a system consisting of indepen-
dently running layers has been designed. The functionality lay-
ers are running on a large number of nodes and sub-nodes.

The low-level node controlling the Front-End Electronics is
an embedded computer system, the DCS board, which provides
the opportunity to run a light-weight Linux system on the card.
The board interfaces to the front-end electronics via a dedicated
hardware interface and connects to the higher DCS-layers via
the DIM communication framework over Ethernet.

This article presents the structure of the communication soft-
ware and the application of the DCS board.

I. INTRODUCTION

The ALICE experiment described in [1] will investigate Pb-
Pb collisions at a center of mass energy of about 5.5 TeV per
nucleon pair and p-p collisions at 14 TeV. The detectors are op-
timized for charged particle multiplicities of up to dNch/dη of
8000 in the central rapidity region.

In general, the Detector Control System (DCS) covers the
tasks of controlling the cooling system, the ventilation system,
the magnetic fields and other supports as well as the configu-
ration and monitoring of the Front-end electronics. Detailed
information on the components and architecture can be found
in [2]. The various components not concerning the TPC Front-
end electronics will not be investigated further.

It is important to notice that the control system is detached

from the data-flow. The data is transported from the Front-end
electronics to Data Acquisition (DAQ) through an optical link.
The main task of the control system is to avoid occurring sys-
tem errors interrupting the data-flow.

Sharing of devices between different sub-systems is avoided
whenever it’s possible, so that independent operation is en-
sured. This is also an important issue in development and com-
missioning of the system, so that each sub-system can be de-
bugged and tested separately from other parts of the system.
This technique is called partitioning and is a widely used fea-
ture in the design of ALICE.

The Time Projection Chamber (TPC) is one of the main
tracking detectors of the ALICE experiment. Charged parti-
cles ionize the gas volume on their way through the detector,
the produced electrons drift in an electromagnetic field towards
the end-caps where the charge is amplified and collected by
a 2-dimensional readout system. Together with the drift time
this provides a 3-dimensional resolution. The TPC consists of
36 sectors which are read out by 4356 Front-End Cards (FEC)
serving roughly 560000 channels. All FECs have to be con-
figured and monitored. Furthermore Programmable Logic De-
vices (PLDs) are widely used in all hardware devices of the
TPC Front-end electronics to keep the system open and flexi-
ble. The configuration thus must include the upload of firmware
to the FPGAs.

II. HARDWARE ARCHITECTURE

Each of the 36 sectors of the TPC is read out by 6 identical
subsystems. The TPC detector uses a specific hardware device,
the Readout Control Unit (RCU), to control a set of Front-End
Cards (FECs). An RCU contains the RCU motherboard, from
now on referred to as RCU board, which hosts two additional
interface boards customized for the ALICE experiment. The



Detector Data Link Source Interface Unit (DDL SIU) is the
ALICE standard interface to the DAQ. The second card, the
DCS board, is an embedded computer which implements the
DCS/Trigger interface.

Figure 1: Components of the TPC Front-end electronics and data flow.

Fig. 1 shows an overview of the electronics. Between 18 and
25 FECs are connected to one RCU board via two bus systems.
A fast 200 MB/s bus, the ALTRO bus, is intended to transport
the event-data and the configuration data between RCU and
FECs. The Slow Control bus allows monitoring and control-
ling the cards without interfering with the data readout process.
The event-data is converted from an analog to a digital signal
by the ALTRO chips ([3]) on the FECs. The ALTRO provides
functionality for digital data processing and has the ability to
reduce the data volume significantly. The data is then handled
by the RCU and shipped out through an optical link that is sited
on the SIU card. The data readout chain and the SIU card, as
well as the RCU motherboard are not investigated further in
this article. Details about the electronics can be found in [4].

III. DCS BOARD EMBEDDED COMPUTER

The low level nodes of the presented system are single board
embedded computers, the DCS boards. The board is used in
several detectors of the ALICE experiment and flexibility has
always been a major concern. The core of the system is an
Altera EPXA1, containing a 32bit ARM processor with cache
and MMU (Memory Management Unit). Among other fea-
tures there are 100k gates of PLD (Programmable Logic De-
vice) available.

In addition to the FPGA, the board hosts a radiation toler-
ant 8 MB Flash ROM, 32 MB SDRAM, an Ethernet interface,
an ADC (Analog-Digital Converter) for voltage and tempera-
ture monitoring, a JTAG connector, as well as dedicated data-
lines to the RCU board connector. All these components make
the DCS board a custom-made, fully-functional computer. The
components of the DCS board make it capable to run a light-
weight version of Linux. A detailed description of the function-
ality can be found in [5].

The Linux operating system combined with the PLD and the
direct access to the bus systems of the Front-end electronics
is the chiefe cause for the flexibility of the system. Registers
and memory on the RCU board are accessible from the operat-
ing system on the DCS board, either directly or indirectly. For
that purpose memory mapped interfaces are defined and can be
accessed via device drivers which define an interface between
software and hardware. A change in the firmware usually only
requires adaption of the driver. This modularization enables
design changes without harming the whole system.

The design of the RCU board is based on an FPGA with
firmware update possibility and enough space to host other
tasks in addition to the readout. Among others, it contains
modules for data assembling, bus interfaces, a Monitoring and
Safety Module and trigger interfaces ([6]). The DCS uses the
RCU board as a sub-node to the DCS board. Specialized tasks
which are adapted to the underlying hardware run on the low-
level nodes while the high-level control tasks are running on
the node itself.

IV. SOFTWARE ARCHITECTURE

Embedded
Computer

Readout
Subsystem

PCs with
Communication Software

PCs with a Commercial
Controlling Software

Supervisory Layer

Control Layer

Field Layer

Embedded
Computer

Embedded
Computer

Embedded
Computer

TPC
Front-end

electronics

Readout
Subsystem

TPC
Front-end
electronics

Readout
Subsystem

TPC
Front-end

electronics

Readout
Subsystem

TPC
Front-end
electronics

Figure 2: Schematic view of the software architecture

A. Functional Layers
A sketch of the system is given in Fig. 2 showing the principles
of the architectural layout. From top to bottom this is:

• The Supervisory Layer
The Supervisory Layer consists of a number of PCs and
provides user interfaces to the operator. It also interfaces
to external systems and services, e.g. the LHC.

• The Control Layer
The Supervisory Layer communicates with the Control
Layer mainly through a LAN network. This layer consists
of PCs, PLCs (Programmable Logic Cells) and PLC like
devices. The Control Layer collects and processes infor-
mation from the Field Layer, as well as sending commands
and information from the Supervisory Layer to the Field
Layer. It also connects to the Configuration Database.

• The Field Layer
The Field Layer consists of all field-devices, sensors, ac-
tuators and so on. The DCS board and the readout elec-
tronics are located in this layer.



The tasks of the three layers are carried out by dedicated pro-
grams. They work in parallel, feeding the operator with useful
information concerning the status of the system, or responding
to commands given at the top-level. The components which
cover the task within the three functional layers are shown in a
more detailed view in Fig. 3.

A SCADA (Supervisory Control And Data Acquisition) sys-
tem acts in the Supervisory Layer, through which the opera-
tor can access and monitor data points related to the hardware
devices. A commercial controlling software, PVSS (Prozess-
Visualisierungs- und Steuerungs- System by ETM1), has been
chosen for the ALICE experiment. The DCS is not restricted to
this specific controlling software but can feature any SCADA
system.

The PVSS connects to the InterComLayer, a specific com-
munication software acting as the Control Layer and connect-
ing the hardware devices in the Field Layer to the controlling
system in the Supervisory Layer. The system uses the com-
munication framework DIM (Distributed Information Manage-
ment System, [7]), which is based on the client-server princi-
ples. Several abstraction layers have been introduced:

• PVSS and InterComLayer communicate through a spe-
cific interface, the Front-End-Device (FED), which is
common among different sub-detectors within the ALICE
experiment. The InterComLayer implements a server
which the PVSS can subscribe to as a client.

• Each hardware device implements a Front-End-
Electronics-Server (FeeServer), which the InterComLayer
subscribes to as a client.

The InterComLayer connects to several FeeServers and
pools data before distributing it to the SCADA system. Vice
versa the InterComLayer distributes configuration data to the
FeeServers. In addition it implements an interface to the Con-
figuration Database containing all specific configuration data
for the hardware devices. The concept of the InterComLayer
and the FeeServer is presented in detail in [8]. A few features
will be outlined here.

B. Communication protocol
Communication between all layers is based on the DIM pro-
tocol. DIM is an open source communication framework
developed at CERN. It provides a network-transparent inter-
process communication for distributed and heterogeneous en-
vironments. TCP/IP over Ethernet is used as transport layer.
A common library for many different operating systems is pro-
vided by the framework. DIM implements a client-server rela-
tion with two major functionalities.

• Services: The DIM server publishes so called services and
provides data through a service. Any DIM client can sub-
scribe to services and monitor their data. The DIM clients
get notified about current values via a callback from the
DIM server.

1ETM professional control GmbH, www.etm.at

• Commands: A DIM server can accept commands from
DIM clients. Server and client have to agree on the format
of the command.

A dedicated DIM name-server takes control over all the run-
ning clients, servers and their services available in the system.
Each server registers at startup all its services and command
channels. For a client the location of a server is transpar-
ent. The control system benefits from the features of the DIM
framework, e.g. independence of machine architecture, process
recovery and load distribution.

Figure 3: Software components and data flow

C. The Front-End-Electronics-Server
Fig. 3 shows a detailed view of the software components and
the data flow. The DCS as described in this article is based
on so called Front-End-Electronics-Servers (FeeServers) which
run on the DCS board. A FeeServer abstracts the underlying
Front-end electronics to a certain degree and covers the follow-
ing tasks:

1. Interfacing hardware data sources and publishing data

2. Receiving of commands and configuration data for con-
trolling the Front-end electronics

3. Self-tests and Watchdogs (consistency check and setting
of parameters)

The core of the FeeServer is device-independent. It provides
general communication functionality, remote control and up-
date of the whole FeeServer application. Some features are re-
lated to the configuration of the data publishing. In order to re-
duce network traffic, variable deadbands have been introduced.
Data is only updated if the variation exceeds the deadband. The
core can be used for different devices, i.e. different detectors of
the ALICE experiment.

The device dependent functionality of the FeeServer is im-
plemented in a separate part, the so-called ControlEngine (CE).
The CE provides data access in order to monitor data points and
executes received commands specific for the underlying hard-
ware. The ControlEngine has contact to the specific bus sys-
tems of the devices. The access is encapsulated in Linux device
drivers.



D. InterComLayer
The InterComLayer takes the task of the Control Layer. It runs
independently from the other system layers on a separate ma-
chine outside of the radiation area. It provides three interfaces
(see also Fig. 3):
• Front-End-Electronics Client (DIM client) to connect to

the Field Layer

• Front-End-Device Server (DIM server) to connect to the
Supervisory Layer

• Interface to the Configuration Database, using a database
client

The InterComLayer connects to all FeeServers. After the
connection is established, the InterComLayer subscribes to the
services of the FeeServers and controls their message channels.
Filtering of messages according to the log-level is performed on
each layer to reduce network traffic. The service channels of the
FeeServers are pooled together and re-published to the upper
layer. By this means the source of the services is transparent to
the SCADA system on top.

In order to transport configuration data to the Front-end elec-
tronics, the InterComLayer has an interface to the configuration
database. Neither database nor InterComLayer know about the
format of the data. The data will be handled as BLOBs (Binary
Large OBjects).

In addition, the InterComLayer provides functionality for
maintenance and control of the FeeServers. Servers can be up-
dated, restarted and their controlling properties can be adjusted
to any requirements.

V. HANDLING OF CONFIGURATION DATA

One major task of the DCS is the download of configuration
data to the Front-end electronic. This concerns mainly the con-
figuration of the Front-End Cards. This section will not explain
the nature of the data, e.g. specific register configuration for
certain behavior of a filter, but will focus on the handling of the
data.

The ALTRO Bus Interface module which is implemented in
the RCU firmware provides access to the FECs through com-
mand sequences. It implements a sequencer which decodes in-
structions written to the RCU Instruction Memory. The instruc-
tions are executed in the form of a single ALTRO instruction
(RCU micro instruction) or sequence of them (RCU macro-
instruction).

In order to have a better load balancing, the requests to the
data base and the data download to the FECs is not carried out
by the PVSS in the Supervisory Level. PVSS sends a command
to the InterComLayer which fetches the configuration data di-
rectly from the data base and sends it to the FeeServer where it
is interpreted inside the ControlEngine.

Using the ALTRO Bus Interface a basic instruction includes
3 steps:
• A command sequence is written to the RCU instruction

memory

• Additional data (if necessary) is written to the RCU pat-
tern memory

• A certain RCU register is set to trigger the sequencer

The ALTRO Bus Interface will then interpret the command se-
quence and ship data to or from the FECs.

The configuration data is organized into so called Configu-
ration Packages (CP). Each package corresponds to a basic se-
quence to write to RCU memory locations. Several such basic
operations can be grouped into one CP. To the communication
software they appear as BLOBs.

Figure 4: Archiving of configuration data

All CP’s are archived in the configuration database. The con-
figuration of an RCU is determined by a Package Descriptor,
which is basically a list of all Configuration Packages needed
for a certain configuration and is represented by a table in the
data base. A complete configuration for the TPC is a list of
PD’s, one for each of the 216 RCUs (Fig. 4). As soon as the
InterComLayer has received a request from the PVSS to load a
certain configuration it fetches the result set for the correspond-
ing table from the data base. It than iterates over all Configura-
tion Packages and sends them down to the FeeServer where the
packages are further processed by the Control Engine.

VI. INTEGRATION TEST

During irradiation tests of the TPC Front-end electronics at
the The Svedberg Laboratory(TSL) in Uppsala/Sweden in May
2005, the control system has been tested extensively. The setup
is shown in Fig. 5. It consisted of an RCU motherboard, a DCS
board and 9 Front-End Cards attached to the RCU. A second
setup used one RCU board equipped with a DCS board run-
ning without any FEC attached. This setup was mainly used
to test the interference between different tasks of the control
system.

The FeeServer was running on the DCS board publishing 10
data points per FEC and a few memory locations in the RCU
memory. Furthermore, a PC was running the InterComLayer.
This integration test didn’t involve the SCADA system in the
Supervisory Layer. All steering of the setup has been done via
command line interfaces. The InterComLayer subscribed to the
services provided by the FeeServer and wrote the values into
files. In addition, all log messages from the FeeServer were
collected, filtered and written to a file.



Figure 5: The setup for the irradiation tests at TSL

A few problems occured in the startup phase including prob-
lems with the DIM framework which caused the FeeServer to
crash under certain circumstances. These has been identified
as timing problems and the software has been adapted to avoid
them. After solving the problems, the control software ran sta-
ble during 3 days until the end of the irradiation test. The inte-
gration test has been continued afterwards and no major prob-
lem could be observed. There is some work necessary to avoid
interference between the FeeServer and the Active Reconfigu-
ration.

VII. SUMMARY AND CONCLUSION

The presented communication software has the task of con-
necting the User Interface in the Supervisory Layer with the
Front-end electronics in the Field layer. The System is based on
servers which are running on a custom-made embedded com-
puter, the DCS board, inside the electronics and have access to
the specific bus systems.

The DCS board is a fundamental part in the distributed sys-
tem which allows running complex controlling software under
the operating system Linux. Tasks can be processed in parallel
on the DCS board and on the connected custom hardware de-
vices. Furthermore, the Linux operating systems on the embed-
ded computers provides flexibility and well known interfaces.

The System is designed to be independent of physical inter-
vention. Software and firmware are easily reconfigurable. To-
gether with the distributed and module-based design with well-
defined interfaces, this increases the flexibility and testability
of the system.

The system is still under development. The modularity
makes it possible to test and review each sub-system on it’s
own independently of the complete setup, and several tests
have been performed with satisfying results.

REFERENCES

[1] ALICE Collaboration, “ALICE Technical Proposal for
A Large Ion Collider Experiment at the CERN LHC,”
CERN/LHCC 1995-71, 1995

[2] ALICE Collaboration, “Technical Design Report: Trigger,
DAQ, HLT, DCS,” CERN/LHCC/2003-062.

[3] R. Esteve Bosch et al , “The ALTRO Chip: A 16-channel
A/D Converter and Digital Processor for Gas Detectors,”
IEEE Transaction on Nuclear Science, Vol. 50 No. 6, Dec.
2003.

[4] L. Musa et al , “The ALICE TPC Front End Electronics,”
in Proc. IEEE Nuclear Science Symposium, 2003

[5] H. Tilsner et al , “Hardware for the Detector Control Sys-
tem of the ALICE TRD,” in Proc. 9th Workshop on Elec-
tronics for LHC Experiments, 2003

[6] C. González Gutiérrez et al , “The ALICE TPC Readout
Control Unit,” in Proc. 10th Workshop on Electronics for
LHC and future Experiments, 2004

[7] C. Gaspar et al , “DIM, a Portable, Light Weight Pack-
age for Information Publishing, Data Transfer and Inter-
process Communication,” Presented at the Int. Confer-
ence on Computing in High Energy and Nuclear Physics,
Padova, Italy, 2000

[8] S. Bablok et al , “Front-End-Electronics Communication
software for multiple detectors in the ALICE experiment,”
Nucl. Instrum. Methods , accepted for publication


