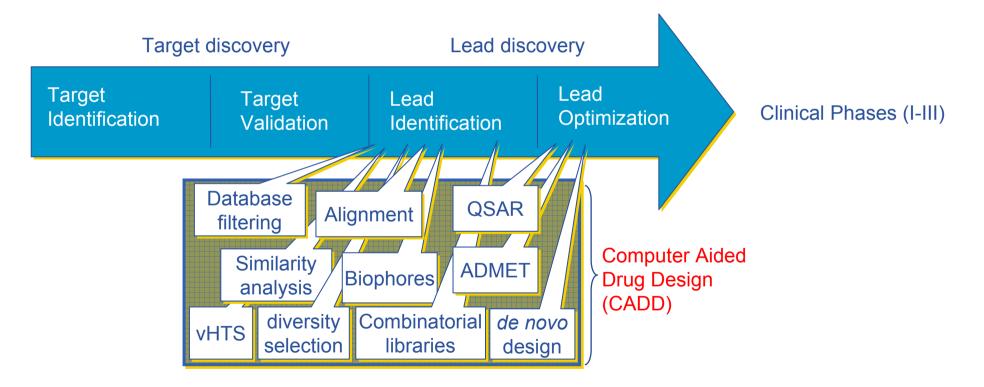


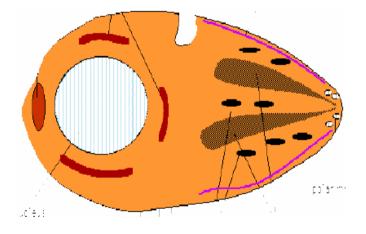
Grid-enabled drug discovery to address neglected diseases

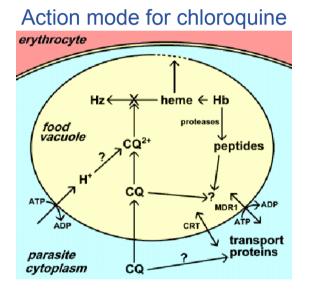
N. Jacq – CNRS-IN2P3 EGAAP meeting - Athens 21 April 2005

www.eu-egee.org



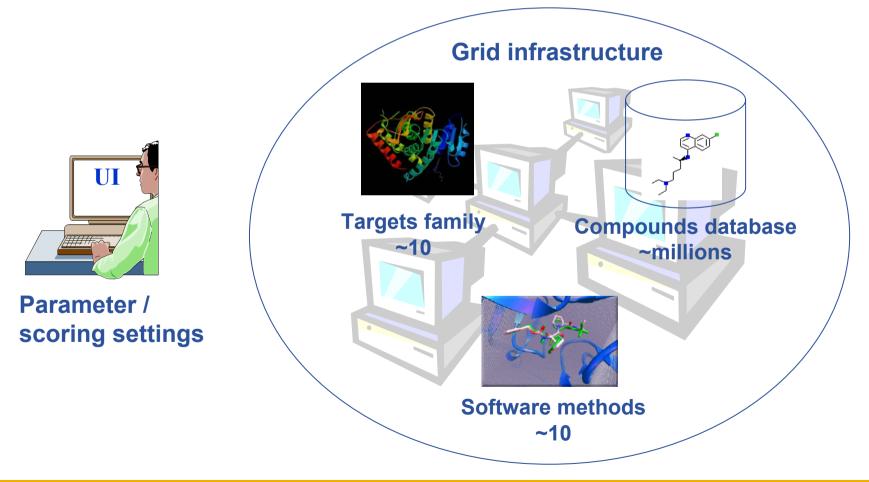
 Demonstrate the relevance and the impact of the grid approach to address Drug Discovery for neglected diseases.


Duration: 12 – 15 years, Costs: 500 - 800 million US \$


Use case

 Propose new inhibitors for the targets implicated by malaria and dengue by using a docking approach on the GRID.

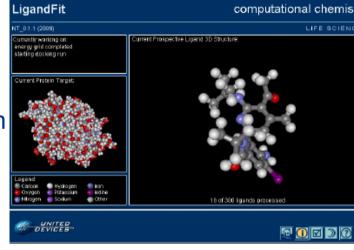
Plasmodium structure


- Well known organism
- Multiple crystal structures
- Multiple bound inhibitors
- Structural similarity between multiple species

- The one more selective
- Acts on multiple targets
- The one with active in low quantities
- Shows good pharmacokinetics properties
- Good pharmacodynamic properties

 Predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure

- Grid.org
 - Global grid of United Device


- World's largest computational grid dedicated to life science research
- More than 3 million registered computers
 - people's home computers
 - computers from numerous universities
 - a large number of corporations
- Grid computing projects on docking to screen 35 million of potential drugs (Computational Chemistry of University of Oxford) against several protein targets
- Reducing the time required to develop a commercial drug

Pervasive grid on docking (2/2)

- Enabling Grids for E-sciencE
- Anthrax Research project (2002/02)
 - Realised in 24 days instead of years
 - 300,000 ranked hits to be refined and analysed
 - Intel, Microsoft

eGee

- Smallpox Research Grid (2004/11)
 - For post-infection anti-viral agents to counter smallpox infections resulting from bioterrorism
 - 39000 years/CPU for 8 targets
 - US Department of Defence, Accelrys, IBM
- Cancer Research Grid (2004/11, phase 1)
 - 1 target / 400 hits selected for the phase 2
 - 2-4% of hits real activity > 0.1% expected by pharmaceutical industry from in silico screening
 - National Foundation for Cancer Research, Accelrys

- World Community Grid
 - new resource sponsored by IBM for massive-scale research projects of global significance
- Human proteome folding project
 - Collaboration between Grid.org and World Community Grid
 - Predicting the protein structures based on known Human Genome sequence data
 - Examining the entire human genome could require up to 1,000,000 years of computational time on an up-to-date PC.
 - Using a commercial 1000 node cluster would require 50 years and, while faster, would still be impractical.
 - Institute of Biology Systems, University of Washington, IBM

• Decrypthon

- AFM (French Muscular Dystrophy Association), CNRS, IBM
- A pervasive grid, with people's home computers (United Devices)
- A supercomputers grid, with 3 French universities (not defined technology)
- Genomics pilot applications

- Perennially
- Permanent availability => 7/7, 24/24, user support
- Robustness, reliability => Experiments reproducibility
- Flexibility
- Security
- Confident results

- First wide *in silico* docking platform on a production infrastructure
- Deployment of a bioinformatic service for diseases (dengue, rare diseases...)
- Proof of concepts with malaria use case
- Data challenge for the scalability

First deployment

- Malaria targets sent by the inputSandbox
 - Lactate dehydrogenase (Energy production, inhibited by chloroquine)
 - Default parameter / scoring settings
- Compounds database deployed on each SE of biomedical VO
 - NCI, National Cancer Institute compounds database
 - 2000 compounds
 - Ambinter, subset of ZINC : a free database of commercially-available compounds for virtual screening
 - 416 000 compounds, 3GB

Docking software

- Autodock : automated docking of flexible ligands to macromolecules
 - ~2,5 mn by target compound job
 - Sent on each CE of the biomedical VO
- FlexX : commercial prediction of protein-compound interactions
 - ~1mn by target compound job
 - Available on SCAI node, soon on LPC node

Submission to EGEE

Enabling Grids for E-sciencE

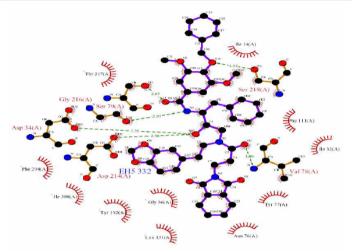
- Tests
 - RBs
 - CEs
 - SEs
- Deployment
 - software
 - database
- Submission
 - Automatic
 - Optimization
 - Fault tolerance
 - Statistics report
 - Results

35 submitted tickets to the Global Grid User Support since January

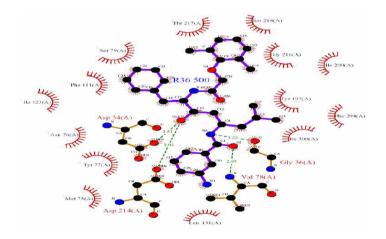
	1 target vs 2000 compounds – 50 jobs	1 target vs 100 000 compounds – 500 jobs (begin of April)
Total CPU time for jobs	2,5 days	188 days
User script time	2,5 h	40 h
Gain of time for the user	25	150
CPU time for 1 job	1,2 h	9h
Input and output transfer time between SE and CE for 1 job	< 1mn	2,5 mn
<i>Waiting time for 1 job due to the grid</i>	7,2 mn	30 mn

INFSO-RI-508833

EGAAP meeting - N. Jacq - Athens 21th April 2005 12


Post filtering

eGee


- Clustering of similar conformations
- Checking pharmacophoric points of each conformation

Enabling Grids for E-sciencE

- Doing statistics on the score distribution
- Re-ranking for interesting compounds
- Sorting and assembly of data

Ligand plot of 1LF3 (plasmepsin II) with inhibitor EH5 332

Ligand plot of 1LEE (Plasmepsin II) with inhibitor R36 500

eGee

Data challenge during the summer

Enabling Grids for E-sciencE

- 5 different structures of the most promising target
 - Plasmepsin II, aspartic protease, involved in the hemoglobin degradation of *Plasmodium*
 - Structures under preparation
- ZINC
 - 3,3 million compounds, ~25 GB
 - To be deployed on each SE
- Autodock
 - ~80 years/CPU
 - ~35 000 jobs of 20h
 - To be deployed on each CE
- Output Data
 - 16,5 million results, ~10 TB
 - Will be stored on SEs

Collaboration

Fraunhofer SCAI

- Martin Hofmann
- Marc Zimmermann
- Kai Kumpf
- Horst Schwichtenberg
- Astrid Maass

CNRS/IN2P3

- Vincent Breton
- Nicolas Jacq
- Jean Salzemann

- Biozentrum Basel
 - Torsten Schwede
 - Michael Podvinec
 - Konstantin Arnold
- CSCS
 - Marie-Christine Sawley
 - Patrick Wieghardt
 - Sergio Maffioletti