
EGEE

EGEE gLite Metadata Catalog User’s Guide

GLITE METADATA CATALOG INTERFACE DESCRIPTION

Document identifier: EGEE-TECH-573725-v1.2

Date: April 12, 2005

Activity: JRA1: Data Management

Document status: DRAFT

Document link: https://edms.cern.ch/document/573725

Abstract: This is the user’s guide to the gLite Metadata Catalog. The basic concepts are defined here as
well as all of the methods in the interfaces. The description is language-neutral. The language-specific
guides with examples are provided as separate guides. The aim of this guide is to explain the design,
concepts and possible applications.

INFSO-RI-508833 PUBLIC 1/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

Document Change Log

Issue Date Comment Author
1.0 1.3.2005 Initial Version. Text by Ricardo Rocha and Peter Kun-

szt
1.1 31.3.2005 Updated based on PTF recommenda-

tions.
Peter Kunszt

1.2 11.4.2005 Working out details, esp. MQL. Ricardo Rocha

Document Change Record

Issue Item Reason for Change

Copyright c©Members of the EGEE Collaboration. 2004. See http://eu-egee.org/partners for de-
tails on the copyright holders.

EGEE (“Enabling Grids for E-science in Europe”) is a project funded by the European Union. For
more information on the project, its partners and contributors please see http://www.eu-egee.org.

You are permitted to copy and distribute verbatim copies of this document containing this copy-
right notice, but modifying this document is not allowed. You are permitted to copy this document
in whole or in part into other documents if you attach the following reference to the copied ele-
ments: “Copyright c©2004. Members of the EGEE Collaboration. http://www.eu-egee.org”

The information contained in this document represents the views of EGEE as of the date they are
published. EGEE does not guarantee that any information contained herein is error-free, or up to
date.

EGEE MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY PUBLISHING
THIS DOCUMENT.

INFSO-RI-508833 PUBLIC 2/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

CONTENTS

1. INTRODUCTION 5

1.1. BASIC CONCEPTS . 5

1.2. COMMON IMPLEMENTATION OBJECTS . 6

1.3. ADDITIONAL CONCEPTS . 7

1.4. INTERACTIONS WITH OTHER SERVICES. 8

2. REFERENCE GUIDE 9

2.1. BASE OPERATIONS. 9

2.1.1. LISTATTRIBUTES . 9

2.1.2. SETATTRIBUTES. 10

2.1.3. QUERY. .10

2.1.4. NEXTQUERY .11

2.1.5. ENDQUERY .12

2.1.6. CLIENT-SIDE METHOD WRAPPERS. 12

2.2. SCHEMA OPERATIONS . 13

2.2.1. CREATESCHEMA. 13

2.2.2. LISTENTRYSCHEMAS. 13

2.2.3. ADDSCHEMAATTRIBUTES. 14

2.2.4. REMOVESCHEMAATTRIBUTES. 14

2.2.5. RENAMESCHEMAATTRIBUTES. 15

2.2.6. DELETESCHEMA. 15

2.2.7. LISTSCHEMAS . 15

2.2.8. DESCRIBESCHEMA. 16

2.2.9. ADDPOLICY .16

2.2.10. DROPPOLICY. .17

2.3. STANDALONE METADATA CATALOG OPERATIONS 17

2.3.1. CREATEENTRY. 17

2.3.2. REMOVEENTRY . 18

2.4. PERMISSIONS. .18

2.4.1. SETPERMISSION. 18

2.4.2. GETPERMISSION. 18

2.4.3. CHECKPERMISSION. 19

2.5. SERVICE OPERATIONS. 19

2.5.1. GETVERSION. .19

2.5.2. GETINTERFACEVERSION. 19

2.5.3. GETSCHEMAVERSION . 20

2.5.4. GETSERVICEMETADATA . 20

2.6. AUXILIARY OBJECTS . 20

INFSO-RI-508833 PUBLIC 3/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

2.6.1. ATTRIBUTE .20

2.6.2. MDENTRY. .21

2.6.3. MDQUERY. .21

2.6.4. MDRESULT .21

2.6.5. PERMISSIONENTRY. 22

3. KNOWN ISSUES AND CAVEATS 22

4. METADATA QUERY LANGUAGE (MQL) 23

4.1. QUERY EXAMPLES. .23

4.2. LANGUAGE GRAMMAR . 24

INFSO-RI-508833 PUBLIC 4/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

1. INTRODUCTION

Metadata is in general a notion of ’data about data’. There are many aspects of metadata, like descriptive
metadata, provenance metadata, historical metadata, security metadata, etc. Due to this multi-faceted
nature of metadata, it is very difficult to define an interface which will suit all possible applications.

We base the interface describe in this document on experience by the usage of the Replica Metadata
Catalog in the EU DataGrid and the LHC Computing Grid projects, on the usage of metadata in the
AliEn File Catalog, on the definition and prototype implementation of the ARDA Metadata interface [1].
In addition, there are a set of use cases and requirements coming from the High Energy Physics and
Biomedical application domains which are recorded in the EGEE Project Technical Forum database [7].
See also the HEP Metadata Group Use Cases document [6] (and references therein).

1.1. BASIC CONCEPTS

We use some concepts in the Metadata interface described here that are common across most use cases.
In order to discuss these concepts we need to define our terminology:

Entry A metadata catalog entry consists of

Key A string that contains the identifier by which the metadata entry will be referenced. This key
must be unique.

Attributes Each attribute may hold information (metadata) about the entry.

In the interface we assume the key to be a string - a file name (like an LFN or GUID, see [5]), a
job identifyer, a patient name, etc; whatever the ’thing’ is to which metadata is to be assigned. Of
course implementations may choose to store the key as another type in the backend.

Attributes An attribute has:

• a schema– a string that identifies the schema to which the attribute belongs to within the
catalog.

• a name– a string that specifies the attribute name within its schema. Attribute names must
be unique within the same schema.

• avalue– represented/encoded as a string.

• a type – a string indicating what kind of information is contained in the value. Different
metadata implementations may accept a different set of types.

Schema Metadata is associated with entries in the catalog via schemas, which define groups of at-
tributes. Schemas can be thought of as tables in a relational database where the attributes define
the columns. There may be many schemas defined in the Metadata Catalog. A schema has:

• a name, which is a string that must be unique (no two schemas may have the same name
within the Metadata Catalog).

• a list of attributes , which defines the schema.

Each catalog entry must have at least one associated schema. Each attribute must be part of a
schema. An attribute is uniquely defined within the Metadata Catalog by its name and the schema
name that it belongs to.

Permission A permission in gLite consists of

INFSO-RI-508833 PUBLIC 5/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

• a BasicPermission, which stores a username, groupname and permission numbers for the
user, group members and others.

• a list of ACLs. The ACL in gLite consists of a principal name (which can be any string, so
either username or group name) and a list of access control bits for read, write, execute, list,
remove, permission, getMetadata and setMetadata.

Permissions are applied at the entry and schema level in the catalog. This provides enough granu-
larity for most applications, but is not enough where attribute-level security is needed.

Policy Policies in gLite consist of a string containing a WHERE clause as defined in the MQL query
language. They provide a way to restrict the access to entries in the catalog based on attribute
values.

MQL The Metadata Query Language. This is an internal definition of a query language to access
metadata inside a catalog following the interface described in this document. It consists of a
subset of all the SQL standard functionality, expressed in ’SELECT ... WHERE ...’ format strings.
For the grammar definition and some examples see section4..

The current gLite Metadata Catalog functionality is spread over four interfaces. These are described in
the quickstart and reference sections in detail.

MetadataBase Two sets of operations are offered through this interface:

• Querying and setting values of attributes for individual entries/items in the catalog.

• Generic queries returning entry/item identifiers.

MetadataCatalog The necessary operations for managing entries in the catalog are available through
this interface. This includes functionality for creating and deleting items.

MetadataSchemaThe necessary operations for handling schemas inside the catalog.

FASBase The set and get permission methods are inherited in MetadataBase from this interface.

An implementation of a Metadata Catalog can choose not to have all the functionality defined in these
interfaces. A concrete example is a File Catalog that may also want to offer file metadata. Functionality
for managing entries/items in the catalog is already provided as part of the File Catalog, so the Metadat-
aCatalog interface is not needed. The MetadataBase interface would be enough to have POSIX xattrs
functionality, and it can be extended with the MetadataSchema interface to add schema management if
desired (as is the case in the gLite Fireman catalog [4]).

1.2. COMMON IMPLEMENTATION OBJECTS

To guarantee interoperability an implementation must closely follow the interface definition of a Meta-
data Catalog. Additionaly, it must provide pre-defined objects which may be used within queries to the
catalog.

request This is the first of these objects. It is a virtual schema, providing information about the current
request. An implementation must expose the following items inside this schema:

clientDN A string containing the Distinguish Name of the client, taken from her certificate.

INFSO-RI-508833 PUBLIC 6/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

clientVOMSAttributes A string containing all the attributes exposed by the client, taken from
the VOMS credential. They should be put in a string in the form ’attr1,attr2,...,attrN’. This
format allows ease of use inside ’schemaName.attrName IN request.clientVOMSAttributes’
expressions in queries.

entry This is the second object. It is a real schema, one that can be linked with entries and have metadata.
In this case, all entries will be linked with this schema by default (without need of an explicit ac-
tion), giving default attributes for every entry. The following items are exposed inside the schema:

ID Holds the unique identifier of the entry in the catalog. It may be used within queries to retrieve
the identifier of entries, or it can be used inside a setAttributes call to rename the entry in the
catalog.

1.3. ADDITIONAL CONCEPTS

Some concepts that are common in applications dealing with metadata are not explicitly used in this
document. These concepts can be mapped on the basic concepts described above. The design of the
interface described here was driven by the principle of keeping it as simple as possible, while allowing
most applications to use the catalog to implement their additional concepts.

Logical Dataset Just like Logical Filenames (described in [5]), logical datasets are simply entries in the
metadata catalog. Logical Datasets are described in the HEPCAL use case document [2, 3].

Collection In many applications data entries are grouped together into collections. The collections
may have different semantics from application to application (having set or group semantics for
example) but the few most basic operations (add and remove member) remain universal. The
collections map almost exactly on the schema concept we have described in the previous section,
since entries in a collection have the same types of attributes. If several collections are needed
that share the very same schema, this may be implemented by adding an additional ’collection’
attribute to the schema which then may be used in queries as an additional constraint on selection
of entries and attributes.

Dataset Another common concept is that of datasets. The difference between datasets and collections
is that entries in a collection share the same schema while datasets are simply groups of entries
without the requirement of sharing the same schema. Datasets may be hierarchical, i.e. a dataset
may contain another dataset. Since this concept does not map on the actual metadata (other than
datasets themselves may have metadata), there is no support for this in the Metadata Catalog we
define here. Datasets may be entries in the Metadata Catalog, so it can store their metadata but the
hierarchy and grouping concepts are a separete set of functionality which would need an additional
different interface to support. For some applications, the hierarchical structure available in the File
Catalog may be sufficient to implement datasets.

Virtual data Some applications virtualize their data by computing it on demand, storing only the meta-
data necessary to recreate it. Such metadata may be defined in the Metadata Catalog as described
here by choosing the appropriate attributes. So a virtual data catalog may be implemented in a
straightforward way on top of this interface.

Virtual Dataset A virtual dataset is sometimes defined as the result of a query in the metadata catalog.
The result may vary, depending on the content of the catalog. The Metadata Catalog as defined
here may be used to store such queries as an attribute (provided the varchar type is long enough
to hold the query string). The query may be retrieved and re-executed anytime by the application,
thus giving it the virutal dataset capability if needed.

INFSO-RI-508833 PUBLIC 7/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

1.4. INTERACTIONS WITH OTHER SERVICES

The Metadata Catalog is a standalone service that others may depend on but it does not depend on any
other grid service (except for the usual security mechanism dependencies, e.g. VOMS).

For an explanation of how the metadata catalog fits into the whole set of data management components
in gLite, see also the Overview of gLite Data Management User’s Guide [5].

INFSO-RI-508833 PUBLIC 8/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

2. REFERENCE GUIDE

In this section we describe each interface and their methods in detail, focussing on their semantics. The
interface inheritance diagram1 shows the interfaces that can be used when interacting with a Metadata
Catalog.

Figure 1: The Metadata Interface inheritance. The Base classes include generic methods, while the
MetadataSchema and MetadataCatalog classes contain the metadata-specific operations.

2.1. BASE OPERATIONS

This section defines theMetadataBase interface. The Operations in this interface are the following:

listAttributes List all attributes associated with an entry.

setAttributes Sets the values for a group of attributes of entries.

query Performs a query on the catalog, returning the requested items and/or attributes.

nextQuery Continue with a query, retrieving the next batch of results.

endQuery Notify the server that the query will not be continued from the client anymore.

There are many auxiliary objects used in these methods. For a detailed description see Section2.6.

2.1.1. LISTATTRIBUTES

This method lists all attributes associated with an entry. Theentry passed in the request is the unique
identifier of the entry in the catalog.

INFSO-RI-508833 PUBLIC 9/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

Attribute[] listAttributes(String entry)

The returned list ofAttribute objects (see section2.6.1.) contains the name of the schema the attribute
belongs to, the attribute name and its type. All attributes associated with the entry and visible by the
client MUST be returned - including the ones with no actual value set for the entry.

Return Value: An array ofAttribute objects. Returns null if the entry has no attributes associated (ie
it has not been associated to a schema yet).

Errors

AuthorizationException No access right to access attributes for this entry.

NotExistsException The entry specified does not exist.

InternalException Any other error on the server side (i.e. database down).

2.1.2. SETATTRIBUTES

int setAttributes(String query, Attribute[] attributes)

This method sets the values for a group of attributes of entries. Thequery string contains a partial MQL
query (only the WHERE clause part). It is a restriction defining the entries that should be affected by
the operation. Theattributes parameter is a list (array) ofAttribute objects (see section2.6.1., each
containing the necessary information to set the new values (schema/name/value triplet).

See Section4. for detailed instructions on how to write your query.

Return Value: The number of entries in the catalog that were affected by the operation.

Errors

AuthorizationException No access right to update values of attributes.

NotExistsException One of the attributes specified does not exist or one of the entries specified
in the query does not exist.

InvalidArgumentException One of thename/schema pairs given for an attribute is invalid; or
one of the attribute’s values is invalid while trying to update values; or the query passed is invalid.

InternalException Any other error on the server side (i.e. database down).

2.1.3. QUERY

MDResult query(MDQuery query)

INFSO-RI-508833 PUBLIC 10/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

This method performs a generic query on the catalog, returning the requested attribute values. It might
return all the results in case of a small resultset, or it might return only partial results if the query results
are above the size defined by the server. To iterate through results, further calls should be made to??.

The query is given using aMDQuery object which is described in Section2.6.3.

Return Value: The resultingMDResult object is described in Section2.6.4.If its booleandone field is
true, all of the results have been placed in theattributes field. Otherwise, thenextQuery method has
to be invoked to get the next batch of results for the given query from the server, passing it thetoken
field of theMDResult object retrieved by the previous query.

Errors

AuthorizationException No access right to list the entries.

NotExistsException Some of the requested attributes do not exist.

InvalidArgumentException The requested attribute contains invalid data.

InvalidQueryException The query is invalid in some way.

InternalException Any other error on the server side (i.e. database down).

2.1.4. NEXTQUERY

MDResult nextQuery(String token, MDQuery query)

This method retrieves the next set of results from the server for a given query. Thetoken field has to be
the one from theMDResult object retrieved by the previous query. The query is repeated in the method
signature in order to enable stateless implementations of the Metadata Catalog. For some implementa-
tions (which keep state on the server) thequery parameter of this method may be left empty.

Return Value: The resultingMDResult object is described in Section2.6.4.If its booleandone field is
true, all of the remaining results have been placed in theattributes field. Otherwise, the method has to
be invoked again to get the next batch of results for the given query from the server. The amount of data
placed into theattributes field is determined by the server’s capabilities and maybe by some client
configuration.

Note: See also discussion in Section2.1.6.

Errors

AuthorizationException No access right to perform the query.

NotExistsException Some of the requested attributes do not exist.

InvalidArgumentException One of the parameters passed to the method is invalid.

InvalidQueryException The query is invalid in some way, the token is out of scope, has expired
or it has already returned in a previous call with the done field set to true.

InternalException Any other error on the server side (i.e. database down).

INFSO-RI-508833 PUBLIC 11/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

void endQuery(String token)

2.1.5. ENDQUERY

In stateful implementations of the interface, this method may be called by the client to inform the server
that a given token is not needed any longer and that its resources may be freed. This call is without effect
on stateless implementations of the interface.

Errors

InvalidArgumentException The token is invalid.

InvalidQueryException The query the token refers to is invalid in some way, the token has ex-
pired or has been already closed by a previous call to this method or has completed already.

InternalException Any other error on the server side (i.e. database down).

2.1.6. CLIENT-SIDE METHOD WRAPPERS

We suggest that the query methods are put in a trivial wrapper on the client side in the following manner:

String query(MDQuery query)
MDEntry[] nextQuery(String token)
boolean endOfQuery(String token)

The firstquery call would just return the token. The first call to thenextQuery call would return the
list of attributes already in memory, retrieved by the actual server-sidequery call described above. The
boolean method would just say whether the query is done. This would make sure that the user of the
client does not make any mistake with the management of the token and the re-passing of the query
object, resulting in unnecessary errors. The MDResult object would be managed completely by the
client wrapper.

A sample client code iterating through a result would look like (in a language-neutral pseudocode)

String token = query(mdquery)

while (!endOfQuery(token)) {

MDEntry[] results = nextQuery(token)
// process results

}

endQuery(token)

INFSO-RI-508833 PUBLIC 12/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

2.2. SCHEMA OPERATIONS

This section defines theMetadataSchema interface. The Operations in this interface are the following:

createSchema Creates a new schema in the catalog.

listEntrySchema Lists all schemas associated with a given entry.

addSchemaAttributes Adds new attributes to an existing schema.

removeSchemaAttributes Removes attributes from an existing schema.

renameSchemaAttributes Renames an attribute in an existing schema.

describeSchema Get the full description of an existing schema in the catalog.

dropSchema Drops an existing schema from the catalog.

listSchema Lists all existing schemas in the catalog.

addPolicy Lists all existing schemas in the catalog.

dropPolicy Lists all existing schemas in the catalog.

2.2.1. CREATESCHEMA

void createSchema(String schemaName, Attribute[] attributes)

This method creates a new schema in the catalog. The new schema is associated with the list of attributes
provided in the call. Each of this attributes will have its own name and type, given by the name and
type fields in theAttribute object. The schema field is ignored. The value field MAY be used to
store a default value for the attribute. See Section2.6.1.for a description of theAttribute object. The
attributes parameter is a list ofAttribute objects.

Errors

AuthorizationException No access for client to create new schemas.

ExistsException A schema with the same name already exists in the catalog, or there is more than
one attribute with the same name in the list of attributes given.

InvalidArgumentException One of the attributes given is invalid. It may be due to an invalid
attribute name (i.e. empty), or the type given not being supported in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.2.2. LISTENTRYSCHEMAS

String[] listEntrySchemas(String entry)

This method simply retrieves all schema names that are associated with a given entry.

INFSO-RI-508833 PUBLIC 13/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

Errors

AuthorizationException No access for client to the entry.

NotExistsException The entry does not exist.

InternalException Any other error on the server side (i.e. database down).

2.2.3. ADDSCHEMAATTRIBUTES

void addSchemaAttributes(String schemaName, Attribute[] attributes)

This method adds new attributes to an existing schema. Attributes MUST be unique within the schema.

TheschemaName is the name of the schema where attributes should be added. Theattributes param-
eter is simply a list ofAttribute objects where thename andtype field MUST be filled in.

Errors

AuthorizationException No access for client to add attributes to the schema.

NotExistsException The given schema does not exist in the catalog.

ExistsException There is already one attribute in the schema with the same name as one of the
attributes in the list given. Or there is more than one attribute with the same name in the list.

InvalidArgumentException One of the attributes given is invalid. It may be due to an invalid
attribute name (i.e. empty), or the type given is not supported in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.2.4. REMOVESCHEMAATTRIBUTES

void removeSchemaAttributes(String schemaName, String[] attributeNames)

This method removes attributes from an existing schema. The semantics of the removal process are up
to the implementation. It can remove the attribute from the schema even if there are entries in the catalog
with values set for it. Or it can decide to remove only if there are no entries actually using this attribute
at the time. It can also decide to remove an attribute from a schema when no entry in the catalog is
associated with the schema at the time of the request.

TheschemaName is the name of the schema where the attributes will be removed. TheattributeNames
is simply a list of the names of the attributes that should be removed from the schema.

Errors

AuthorizationException No access for removing attributes from the schema.

NotExistsException The given schema or one of the attributes given does not exist in the catalog.

InternalException Any other error on the server side (i.e. database down).

INFSO-RI-508833 PUBLIC 14/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

2.2.5. RENAMESCHEMAATTRIBUTES

void renameSchemaAttribute(String schemaName, String attributeName,
String newName)

This method renames an attribute in an existing schema. TheschemaName is the name of the schema
where the attribute will be renamed. TheattributeName is the current name and thenewName is the
new name of the attribute.

Errors

AuthorizationException No access for changing attributes in the schema.

NotExistsException The given schema or one of the attributes given does not exist in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.2.6. DELETESCHEMA

void deleteSchema(String schemaName)

This method removes an existing schema from the catalog. The semantics of this operation are up to the
implementation. It may be that a schema can only be deleted if no entries in the catalog are associated
with it at the time of the request. Or it may be that schemas are deleted even when there are entries
associated with them. This would mean the existing metadata would be lost.

TheschemaName is the name of the schema to be removed from the catalog.

Errors

AuthorizationException No access for client to delete the schema.

NotExistsException The given schema does not exist in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.2.7. LISTSCHEMAS

String[] listSchemas()

This method lists all existing schemas in the catalog. The list of strings returned contains only the names
of the schemas, not the whole description. To get the details on each of the schemas in the catalog, an
additional request should be made todescribeSchema, where all the attributes and their descriptions
will be returned.

INFSO-RI-508833 PUBLIC 15/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

Errors

AuthorizationException No access to list schemas for the client.

InternalException Any other error on the server side (i.e. database down).

2.2.8. DESCRIBESCHEMA

Attribute[] describeSchema(String schemaName)

This method gets the full description of an existing schema in the catalog. A schema is described by the
attributes it contains. Each of these attributes is represented as anAttribute object, so the description
of a schema is simply a list ofAttribute objects. TheschemaName is the name of the schema to return
the description of.

Return Value: A list of Attribute objects fully describing all elements of the schema. Each of these
objects MUST have thename andtype fields filled in. Theschema field’s may be empty. The returned
array may be empty if the schema is empty.

Errors

AuthorizationException No access for client to get the schema description.

NotExistsException The schema requested does not exist in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.2.9. ADDPOLICY

void addPolicy(String schemaName, String policy)

This method adds a new policy to the given schema. The policy is passed as a WHERE clause as defined
in the MQL query language. The main example of use of policies is setting that only clients where the
DN (Distinguished Name) taken from the certificate is equal to a given attribute are allowed to access
the metadata of the items.

Errors

AuthorizationException No access for client to add policies to the schema.

NotExistsException The schema requested does not exist in the catalog.

InvalidArgumentException The policy passed as argument is invalid.

InternalException Any other error on the server side (i.e. database down).

INFSO-RI-508833 PUBLIC 16/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

void dropPolicy(String schemaName, String policy)

2.2.10. DROPPOLICY

This method removes an existing policy associated with the schema. There is no unique identifier to
each policy. The whole string containing the existing policy is passed and matched against the policies
associated with the schema. If there is a match, it is dropped.

Errors

AuthorizationException No access for client to drop policies from the schema.

NotExistsException The schema or the policy requested does not exist in the catalog.

InternalException Any other error on the server side (i.e. database down).

2.3. STANDALONE METADATA CATALOG OPERATIONS

This section defines theMetadataCatalog interface. The Operations in this interface are the following:

createEntry Creates new items/entries in the catalog.

removeEntry Removes items/entries from the catalog.

2.3.1. CREATEENTRY

void createEntry(MDEntry[] entries, String[] schemas)

This method creates new entries in the catalog. All entries given in theentries array will be associated
to all the schemas in theschemas array. Additionaly the attribute values will be set according to the
values in theAttribute array inside eachEntry object. This array may be empty if no values should
be set on creation. TheMDEntry object is described in Section2.6.2..

Errors

AuthorizationException No access for creating new entries.

ExistsException An entry already exists in the catalog.

NotExistsException A specified schema does not exist in the catalog.

InvalidArgumentException The given identifier for the new entry is invalid. Or some of the
attributes given in the entry belong to a schema not listed in theschemas argument.

InternalException Any other error on the server side (i.e. database down).

INFSO-RI-508833 PUBLIC 17/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

void removeEntry(String query)

2.3.2. REMOVEENTRY

This method remove existing entries from the catalog. Thequery string should be a WHERE clause as
defined in the4. query language. It is a set of conditions that should result in a list of entry identifiers to
be deleted.

Errors

AuthorizationException No access for deleting entries.

InvalidArgumentException The query string is invalid.

InternalException Any other error on the server side (i.e. database down).

2.4. PERMISSIONS

This section defines the access permissions for theFASBase interface. The Operations in this interface
are the following:

setPermission Sets full set of permissions BasicPermission,ACL for a given item.

getPermission Retrieves all set permissions for given items.

checkPermission Checks if the current user has the required permission bits on the specified items.

2.4.1. SETPERMISSION

void setPermission(PermissionEntry[] permissions)

This method sets the full set of permissions BasicPermission,ACL for a given item, replacing any previ-
ous permissions. Theitem field in thePermissionEntry object may also contain a schema name. The
PermissionEntry object is described in Section2.6.5.

Errors

AuthorizationException No access right to update the permissions.

NotExistsException The item does not exist.

InvalidArgumentException Some part of the argument is invalid.

2.4.2. GETPERMISSION

This method retrieves all permissions for the given items. ThePermissionEntry object is described in
Section2.6.5.

INFSO-RI-508833 PUBLIC 18/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

PermissionEntry[] getPermission(String[] items)

Errors

AuthorizationException No access right to get the permission information.

NotExistsException The item does not exist.

InvalidArgumentException Some part of the argument is invalid.

2.4.3. CHECKPERMISSION

void checkPermission(String[] items, Perm perm)

This method checks if the current user has the required permission bits given by thePerm object on the
specified items and returns with an AuthorizationException if for some items this is not the case.

Errors

AuthorizationException The permission check failed - some entries cannot be accessed with
the given Perm.

NotExistsException An item does not exist

2.5. SERVICE OPERATIONS

This section defines theServiceBase interface. The Operations in this interface are the following:

getVersion Retrieve the implementation version.

getInterfaceVersion Retrieves the service interface version being implemented.

getSchemaVersion Retrieve the version of the schema being used.

getServiceMetadata Retrieve the value of a given key associated with this service.

2.5.1. GETVERSION

String getVersion()

Return the server implementation version as a string.

2.5.2. GETINTERFACEVERSION

Return the interface version as a string.

INFSO-RI-508833 PUBLIC 19/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

String getInterfaceVersion()

String getSchemaVersion()

2.5.3. GETSCHEMAVERSION

Return the schema version as a string.

2.5.4. GETSERVICEMETADATA

String getServiceMetadata(String key)

Service metadata query. Thekey parameter has to be specified. The method will return the requested
parameter or an empty string if it does not exist.

2.6. AUXILIARY OBJECTS

In this section we define all the auxiliary objects that are being used in the interface methods described
above.

2.6.1. ATTRIBUTE

Attribute {

String schema
String name
String type
String value

}

The Attribute object contains a schema, a name, a type and a value. It is the object with which
items/entries in the Metadata Catalog can be associated.

An attribute in the Metadata Catalog is unique within a schema, in the sense that the combination
name/type MUST be unique inside every given schema.

All values stored inside an Attribute are encoded as strings, even if the backend is storing them using a
different type. The type of an Attribute is a hint on the content of this string, so that the backend can
optimize storage and clients can decide how to present the information.

INFSO-RI-508833 PUBLIC 20/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

MDEntry {

String entry
Attribute[] attributes

}

2.6.2. MDENTRY

The MDEntry object contains the entry identifier and a list of attributes associated with the entry. It
corresponds to an entry in the catalog, although it may contain only part of the attributes stored in the
catalog.

2.6.3. MDQUERY

MDQuery {

String query
String type

}

A query on the metadata catalog is represented using theMDQuery object. The object contains the query
itself, which is defined using the language specified in thetype field.

An implementation of this interface may decide to support more than one query type. Even in this case,
the basic query language defined as part of this interface, named MQL, MUST be supported by all the
implementation to guarantee interoperability.

gLite intends to provide client-side utilities that convert BNL or XPath strings into MQL queries, which
are very close to SQL queries.

2.6.4. MDRESULT

MDResult {

Boolean done
String token
MDEntry[] entries

}

TheMDResult object is returned by calls toquery andnextQuery.

Thedone field tells the client if all results were retrieved, or if furthernextQuery calls should be per-
formed. Thetoken field holds an identifier for the given request, which is useful for the client-side
wrappers and stateful implementations.

INFSO-RI-508833 PUBLIC 21/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

Finally, theentries field holds the results of each iteration. The structure is that each item in the resultset
is an entry or part of an entry in the catalog. If it happens that the only information to be retrieved is
the identifier of the entry, then inside each MDEntry object theattributes field is null. Otherwise,
the attributes are placed in this array, and associated with the entry they belong (allowing the retrieval of
attributes for more than one entry in one call).

2.6.5. PERMISSIONENTRY

PermissionEntry {

Permission permission
String item

}

Permission {

ACLEntry[] acl
}

ACLEntry {

Perm principalPerm
String principal

}

Perm {

Boolean permission
Boolean remove
Boolean read
Boolean write
Boolean list
Boolean execute
Boolean getMetadata
Boolean setMetadata

}

PermissionEntry contains a single item permission. The item is identified by a string, being the catalog
entry item and the permission is aPermission object. ThePermission object is composed of a list of
ACLEntry objects, which in turn is a named principal (like a DN or a group name) and the associated
permission bits, given by thePerm object. The single permission bits have different meanings for each
of the metadata operations.

3. KNOWN ISSUES AND CAVEATS

Schema evolution is not being dealt with explicitly. The question how changes are being dealt with is
left to the implementation. One of the suggestions is to have a timestamp-based rule of keeping track of

INFSO-RI-508833 PUBLIC 22/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

all changes. Another may be to assign both the new and the old schema to the entry, keeping track of the
schema names somehow (but this would quickly lead to scaling problems). If an attribute is renamed,
for example, how is this information to be kept using a time-stamp based approach?

Another issue is security. Current definition provides access control on the entry and schema level
basis, and additionaly policies provide a way to restrict access to entries based on attribute values. The
limitation of this model is that if access is granted or denied, the user will see all or none of the attributes
inside the schema, respectively. There is no explicit way to define access control at the attribute level, and
it is seen as too expensive to provide the same access control as done in entries and schemas - too fine-
grained, and thus difficult to manage and performing poorly. A possibility is to have schemas defined in
a way that this access restrictions are explicit, but it is not seen as a perfect solution either.

4. METADATA QUERY LANGUAGE (MQL)

Apart from having a common set of message exchanges between clients and service implementations, a
common way for describing the queries being passed to the service is also necessary.

For this goal gLite has defined a query language very close to the SQL standard, but exposing only a
subset of its functionality. The language is defined in a grammar using a BNF-like syntax, but specific to
a tool called ANTLR. Converting the given syntax to be understood by another tool which follows BNF
syntaxes should be straightforward.

4.1. QUERY EXAMPLES

MQL syntax has two main parts: SELECT and WHERE. The meaning is the same as in the SQL stan-
dard: SELECT defines the attributes that should be retrieved to the client, WHERE defines the condition
that restricts the results.

The best way to introduce the language is by giving a few examples.

SELECT schemaOne.attr1ForSchemaOne, schemaTwo.attr1ForSchemaTwo
WHERE schemaOne.attr2ForSchemaOne != null;

This is an extremely simple example. It states that bothattr1ForSchemaOne from schemaOne and
attr1ForSchemaTwo from schemaTwo should be retrieved to the client, but only for entries where
attr2ForSchemaOne from schemaOne is notnull.

In MQL all attributes MUST be namespaced (format being schemaName.attributeName). More complex
queries can be made, involving functions and operators, or condition clauses including the operatorsLIKE
andIN. The following example includes some of this functionality.

SELECT (schemaOne.attr1ForSchemaOne + schemaTwo.attr1ForSchemaTwo),
sum(schemaTwo.attr2ForSchemaTwo) + schemaThree.attr1ForSchemaThree,
WHERE schemaOne.attr2ForSchemaOne LIKE ’%sample%’
AND schemaThree.attr2ForSchemaThree = schemaOne.attr1ForSchemaOne;

Apart from using the user-defined schemas, one can also use the pre-defined schemas describe in section
1.2.. As an example of the usage of this virtual schema information, imagine a doctor wanting to retrieve
all information from all his patients. A possible query would be:

INFSO-RI-508833 PUBLIC 23/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

SELECT patientInfo.* WHERE patientInfo.doctor = request.clientDN;

4.2. LANGUAGE GRAMMAR

Several internal ANTLR definitions were removed to make the grammar more clear. The definition of
the rules and tokens are not affected.

//////////////////////
// MQL Parser Rules //
//////////////////////

query
: "select" select_list "where" condition (SEMI)?
;

select_list
: column ((COMMA) column)*
;

column
: (schema_name DOT ASTERISK) => schema_name DOT ASTERISK
| (expression ("as" identifier)*) => expression ("as" identifier)*
;

expression
: term ((PLUS | MINUS) term)*
;

term
: sub_term ((ASTERISK | DIVIDE) sub_term)*
;

sub_term
: sql_literal
| function OPEN_PAR column (COMMA column)* CLOSE_PAR
| OPEN_PAR expression CLOSE_PAR
| schema_name DOT attribute_name
;

function
: numeric_function
| char_function
| group_function
;

numeric_function
: "abs" | "cos" | "log" | "mod" | "pow" | "rnd" | "sin" | "sqrt"
;

INFSO-RI-508833 PUBLIC 24/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

char_function
: "concat" | "lower" | "length" | "substr" | "upper"
;

group_function
: "avg" | "count" | "min" | "max" | "sum"
;

sql_literal
: NUMBER | QUOTED_STRING | "null"
;

attribute_name
: identifier
;

schema_name
: identifier
;

comparison_op
: EQ | LT | GT | NOT_EQ | LTE | GTE
;

identifier
: IDENTIFIER
;

condition
: condition_term (OR condition_term)*
;

condition_term
: condition_subterm (AND condition_subterm)*
;

condition_subterm
: (expression comparison_op expression)
=> expression comparison_op expression
| (OPEN_PAR condition CLOSE_PAR) => OPEN_PAR condition CLOSE_PAR
| (expression "like" sql_literal) => expression "like" sql_literal
| (expression "in" sql_literal_list)
=> expression "in" sql_literal_list
;

sql_literal_list
: OPEN_PAR sql_literal (COMMA sql_literal)* CLOSE_PAR
;

/////////////////////////////////

INFSO-RI-508833 PUBLIC 25/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

// MQL Parser Token Definition //
/////////////////////////////////

IDENTIFIER
: ’a’..’z’(’a’..’z’|’0’..’9’|’_’|’$’|’#’)*
;

QUOTED_STRING
: ’\’’ (˜’\’’)* ’\’’
;

NUMBER
: ’0’..’9’ (’0’..’9’)* ((DOT) (’0’..’9’))*
;

EQ
: ’=’
;

NOT_EQ
: "<>" | "!=" | "ˆ="
;

LT
: ’<’
;

GT
: ’>’
;

LTE
: "<="
;

GTE
: ">="
;

OPEN_PAR
: ’(’
;

CLOSE_PAR
: ’)’
;

PLUS
: ’+’
;

INFSO-RI-508833 PUBLIC 26/28

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

MINUS
: ’-’
;

ASTERISK
: ’*’
;

AND
: "and" | "&&"
;

OR
: "or" | "||"
;

DOT
: ’.’
;

COMMA
: ’,’
;

SEMI
: ’;’
;

WS
: (’ ’ | ’\t’ | ’\r’ ’\n’ | ’\n’)
;

REFERENCES

[1] N. Santos B. Koblitz. A Proposal for a Metadata Interface. Technical Note, January 2005.http:
//agenda.cern.ch/askArchive.php?base=agenda&categ=a05664&id=a05664s1t1/document.

[2] F. Carminati, P. Cerello, C. Grandi, E. Van Herwijnen, O. Smirnova, and J. Templon. Common Use
Cases for a HEP Common Application Layer – HEPCAL. Technical report, LHC Computing Grid
Project, 2002. http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG GAG Docs/HEPCAL-prime.
pdf.

[3] F. Carminati and J. Templon (Editors). Common Use Cases for a HEP Common Application Layer
for Analysis – HEPCAL II.http://lcg.web.cern.ch/LCG/SC2/GAG/HEPCAL-II.doc.

[4] JRA1 Data Management Cluster.Catalog User Guide. EGEE, March 2005.https://edms.cern.ch/
document/570780.

[5] JRA1 Data Management Cluster.Overview of gLite Data Management. EGEE, March 2005.https:
//edms.cern.ch/document/570643.

INFSO-RI-508833 PUBLIC 27/28

http://agenda.cern.ch/askArchive.php?base=agenda&categ=a05664&id=a05664s1t1/document
http://agenda.cern.ch/askArchive.php?base=agenda&categ=a05664&id=a05664s1t1/document
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/HEPCAL-prime.pdf
http://project-lcg-gag.web.cern.ch/project-lcg-gag/LCG_GAG_Docs/HEPCAL-prime.pdf
http://lcg.web.cern.ch/LCG/SC2/GAG/HEPCAL-II.doc
https://edms.cern.ch/document/570780
https://edms.cern.ch/document/570780
https://edms.cern.ch/document/570643
https://edms.cern.ch/document/570643

EGEE GLITE METADATA CATALOG
USER’S GUIDE

gLite Metadata Catalog Interface Description

Doc. Identifier:
EGEE-TECH-573725-v1.2

Date: April 12, 2005

[6] Steven Hanlon et. al. Unlucky for Some: The thirteen core use cases for HEP metadata. Technical
Note, December 2004.http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/
CoreUseCases v10.pdf.

[7] EGEE Project Technical Forum Requirements Database.https://savannah.cern.ch/support/?group=
egeeptf.

INFSO-RI-508833 PUBLIC 28/28

http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/CoreUseCases_v10.pdf
http://www.gridpp.ac.uk/datamanagement/metadata/SubGroups/UseCases/CoreUseCases_v10.pdf
https://savannah.cern.ch/support/?group=egeeptf
https://savannah.cern.ch/support/?group=egeeptf

	1. Introduction
	1.1. Basic Concepts
	1.2. Common Implementation Objects
	1.3. Additional Concepts
	1.4. Interactions with other Services

	2. Reference Guide
	2.1. Base Operations
	2.1.1. listAttributes
	2.1.2. setAttributes
	2.1.3. query
	2.1.4. nextQuery
	2.1.5. endQuery
	2.1.6. Client-Side Method Wrappers

	2.2. Schema Operations
	2.2.1. createSchema
	2.2.2. listEntrySchemas
	2.2.3. addSchemaAttributes
	2.2.4. removeSchemaAttributes
	2.2.5. renameSchemaAttributes
	2.2.6. deleteSchema
	2.2.7. listSchemas
	2.2.8. describeSchema
	2.2.9. addPolicy
	2.2.10. dropPolicy

	2.3. Standalone Metadata Catalog Operations
	2.3.1. createEntry
	2.3.2. removeEntry

	2.4. Permissions
	2.4.1. setPermission
	2.4.2. getPermission
	2.4.3. checkPermission

	2.5. Service Operations
	2.5.1. getVersion
	2.5.2. getInterfaceVersion
	2.5.3. getSchemaVersion
	2.5.4. getServiceMetadata

	2.6. Auxiliary Objects
	2.6.1. Attribute
	2.6.2. MDEntry
	2.6.3. MDQuery
	2.6.4. MDResult
	2.6.5. PermissionEntry

	3. Known Issues and Caveats
	4. Metadata Query Language (MQL)
	4.1. Query Examples
	4.2. Language Grammar

