
 

 
  

GridPP 
 

G R I D  S E C U R I T Y  V U L N E R A B I L I T Y  
D E T E C T I O N  A N D  R E D U C T I O N  

 
 

 
 

 Document 
Identifier XXXXX 

 Date 18/04/2005 

 Version  0.2 

 Document 
status: DRAFT 

 Author Linda Cornwall, CCLRC (RAL) 

 Document link:  

 
 
Abstract: This document describes what we mean by vulnerabilities, describes which principals 
should be protected from such vulnerabilities, and describes what these principals need protecting 
from. It contains strategies for detecting and reducing vulnerabilities, including checklists to reduce 
the likelihood of there being vulnerabilities in both the middleware and deployment, logging of 
known vulnerabilities, and ‘anti use cases’ actions which should not be allowed by the system.    

 
 

PUBLIC  1 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

XXX 

Document Log 

Issue Date Comment Author/Partner 

0-0 16th Feb 2005 First draft Linda Cornwall 

0.1 5th Apr 2005 A few minor changes and additions Linda Cornwall 

0.2 18th Apr 2005 Changes to logging Linda Cornwall 

    

Document Change Record 

Issue Item Reason for Change 

0.1 Added more on Vulnerability 
logging Tried out a few examples and have better idea. 

 
Added the following:- 
VER-04, COM-08, IOCxx,  
FIH-11, MAS-04 

Various discussions etc. 

0.2  Changes to logging After more thoughts and discussion 

 

PUBLIC  2 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

CONTENT 
1. INTRODUCTION............................................................................................................................................. 6 

1.1. PURPOSE....................................................................................................................................................... 6 
1.2. APPLICATION AREA ...................................................................................................................................... 6 
1.3. REFERENCES ................................................................................................................................................. 7 
1.4. DOCUMENT EVOLUTION PROCEDURE ............................................................................................................ 7 
1.5. TERMINOLOGY.............................................................................................................................................. 8 

2. SECURITY VULNERABILITY DESCRIPTION......................................................................................... 9 
2.1. WHAT SHOULD WE BE PROTECTING? ............................................................................................................ 9 

2.1.1. Protecting the system............................................................................................................................ 9 
2.1.2. Protecting data and information .......................................................................................................... 9 
2.1.3. Protecting other systems from our Grid system ................................................................................... 9 
2.1.4. Protecting the user from the system ..................................................................................................... 9 
2.1.5. Protecting those who deploy the grid ................................................................................................. 10 

2.2. WHAT ARE WE PROTECTING FROM? ............................................................................................................ 10 
2.2.1. An Untrustworthy system.................................................................................................................... 10 
2.2.2. An untrustworthy administrator ......................................................................................................... 10 
2.2.3. An untrustworthy user ........................................................................................................................ 10 
2.2.4. An untrustworthy machine.................................................................................................................. 10 
2.2.5. A hacker.............................................................................................................................................. 10 
2.2.6. Untrustworthy software...................................................................................................................... 10 

2.3. WAYS OF PROTECTING FROM VULNERABILITIES ........................................................................................ 10 
2.3.1. Middleware......................................................................................................................................... 11 
2.3.2. Configuration and Deployment .......................................................................................................... 11 

2.4. GOOD PRACTICES ....................................................................................................................................... 12 
2.4.1. Checking principals............................................................................................................................ 12 
2.4.2. Care over combination of roles .......................................................................................................... 12 
2.4.3. CA and VO procedures....................................................................................................................... 12 
2.4.4. Management of Secrets ...................................................................................................................... 12 

2.5. MECHANISMS FOR PREVENTING OR DETECTING MISUSE ............................................................................. 12 
2.5.1. Logging and processing of logs.......................................................................................................... 12 
2.5.2. Usage tools......................................................................................................................................... 12 
2.5.3. Service version checking .................................................................................................................... 13 
2.5.4. Incident Response............................................................................................................................... 13 

2.6. VULNERABILITY DETECTION THROUGH USE OF CHECKLISTS ...................................................................... 13 
2.6.1. Principle ............................................................................................................................................. 13 
2.6.2. What does satisfying each check give us? .......................................................................................... 13 

2.7. DISCOVERY OR AWARENESS OF SPECIFIC VULNERABILITIES....................................................................... 14 
2.8. RELATION TO RISK ASSESSMENT................................................................................................................. 14 

3. MIDDLEWARE VULNERABILITY CHECKLIST................................................................................... 15 
3.1. DESIGN ....................................................................................................................................................... 15 
3.2. CODING PRACTICE...................................................................................................................................... 16 
3.3. COMMUNICATIONS ..................................................................................................................................... 17 
3.4. INPUT CHECKING ........................................................................................................................................ 19 
3.5. BUFFER OVERFLOWS................................................................................................................................... 20 
3.6. UNWELCOME CODE BEHAVIOUR ................................................................................................................. 21 
3.7. CONFIDENTIAL DATA.................................................................................................................................. 23 
3.8. BACKDOORS ............................................................................................................................................... 24 
3.9. MIDDLEWARE ACCESS TO THE SYSTEM....................................................................................................... 24 
3.10. EXPOSING INFORMATION ABOUT THE SYSTEM .......................................................................................... 25 
3.11. FILE HANDLING ........................................................................................................................................ 26 
3.12. AUTHORIZATION....................................................................................................................................... 28 

PUBLIC  3 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

3.13. USAGE ...................................................................................................................................................... 29 
3.14. DEPENDENCIES ......................................................................................................................................... 30 
3.15. ERROR HANDLING..................................................................................................................................... 31 
3.16. FAILURE ................................................................................................................................................... 32 
3.17. LOGGING MECHANISMS ............................................................................................................................ 32 
3.18. SPECIFIC CHECKS ON SECURITY MIDDLEWARE.......................................................................................... 34 
3.19. INTEGRATION OF SECURITY MIDDLEWARE WITH OTHER MIDDLEWARE .................................................... 34 
3.20. TESTING.................................................................................................................................................... 35 
3.21. OTHER MIDDLEWARE CHECKS.................................................................................................................. 37 
3.22. DOCUMENTATION..................................................................................................................................... 38 

4. DEPLOYMENT AND CONFIGURATION CHECKLIST ........................................................................ 40 
4.1. SOFTWARE VERSIONS................................................................................................................................. 40 
4.2. DEPLOYMENT METHODS ............................................................................................................................ 40 
4.3. DEPLOYMENT AUTHENTICATION AND AUTHORIZATION ............................................................................. 41 
4.4. FIREWALLS ................................................................................................................................................. 42 
4.5. USE OF CREDENTIALS................................................................................................................................. 43 
4.6. HANDLING CONFIDENTIAL DATA................................................................................................................ 45 
4.7. LOGGING STRATEGY ................................................................................................................................... 46 
4.8. STAFF ......................................................................................................................................................... 47 
4.9. INCIDENT RESPONSE AND DETECTION ......................................................................................................... 48 
4.10. ISSUEING OF CREDENTIALS ....................................................................................................................... 48 

5. SPECIFIC KNOWN VULNERABILITY LOGGING ................................................................................ 49 
5.1. WHAT TO LOG............................................................................................................................................. 49 

5.1.1. Title .................................................................................................................................................... 49 
5.1.2. Date .................................................................................................................................................... 49 
5.1.3. Location.............................................................................................................................................. 49 
5.1.4. Software.............................................................................................................................................. 49 
5.1.5. Vulnerability....................................................................................................................................... 49 
5.1.6. Exploit Flag........................................................................................................................................ 49 
5.1.7. Proposed action – immediate ............................................................................................................. 49 
5.1.8. Exploitation ........................................................................................................................................ 49 
5.1.9. Analysis .............................................................................................................................................. 50 
5.1.10. Proposed solution – short term ........................................................................................................ 50 
5.1.11. Proposed solution – long term ......................................................................................................... 50 
5.1.12. Detailed Risk analysis ...................................................................................................................... 50 
5.1.13. Checklist reference ........................................................................................................................... 50 
5.1.14. Checklist proposal............................................................................................................................ 50 
5.1.15. Further info and decisions................................................................................................................ 50 

5.2. WHEN TO RECORD WHAT ............................................................................................................................ 50 
5.3. MEMBERS OF THE VULNERABILITY GROUP ................................................................................................. 51 
5.4. PASSING INFORMATION OUTSIDE THE GROUP.............................................................................................. 51 
5.5. MANAGEMENT AGREEMENT ....................................................................................................................... 52 

6. VULNERABILITY ‘USE CASES’................................................................................................................ 53 
6.1. USE CASE CHECKING.................................................................................................................................. 53 

6.1.1. How would you achieve it?................................................................................................................. 53 
6.1.2. What Specific Mechanism(s) prevent this?......................................................................................... 53 
6.1.3. Try it - possibly................................................................................................................................... 53 
6.1.4. Is the attempt successful? ................................................................................................................... 53 
6.1.5. Is the attempt logged? ........................................................................................................................ 53 
6.1.6. Is the attempt detected?...................................................................................................................... 53 
6.1.7. How is the attempt handled? .............................................................................................................. 53 

6.2. USE CASE EXAMPLES ................................................................................................................................. 53 

PUBLIC  4 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

6.2.1. Storage of illegal material for distribution......................................................................................... 53 
6.2.2. Certificate Cracking ........................................................................................................................... 53 
6.2.3. Credentials theft ................................................................................................................................. 53 
6.2.4. Launch of a denial of service attack on the Grid................................................................................ 54 
6.2.5. Launch of a denial of service attack from the Grid ............................................................................ 54 
6.2.6. Theft of confidential information........................................................................................................ 54 
6.2.7. Destruction of valuable data .............................................................................................................. 54 
6.2.8. Addition of an un-trusted host ............................................................................................................ 54 

6.3. DISCUSSION ................................................................................................................................................ 54 
7. CHECKLIST TABLES .................................................................................................................................. 55 

7.1. MIDDLEWARE CHECKLIST .......................................................................................................................... 55 
7.2. DEPLOYMENT CHECKLIST .......................................................................................................................... 59 

PUBLIC  5 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

1. INTRODUCTION 

1.1. PURPOSE 
Many people who develop or deploy grids are aware that there may be some vulnerability in the 
currently deployed grid systems.  The purpose of the document is to describe some strategies for 
detecting and reducing Security vulnerabilities on the Grid, both associated with Grid middleware, and 
with grid deployment.  
Security requirements in a Grid environment were looked at as part of the DataGrid project (D7.5) Ref 
– [1], a design was presented (D7.6) Ref – [2], various security middleware utilities were written and 
an assessment of progress towards satisfying these requirements was produced (D7.7) Ref – [3].  
Work is continuing in this area in the EGEE project, requirements have been revised  Ref - [4] and an  
architectural design Ref – [5] along with various other documents have been produced. 
However, these all look mainly at security functionality, particularly the security functionality needed 
to satisfy the Authentication and Authorization Requirements. Little has been done to ask, let alone 
answer the question ‘is the grid secure’.  
Vulnerability can be considered to be where a system may behave in a way that is not intended, with 
the possibility of causing damage to the system itself, damage or unauthorized access to data or 
information on the system, or damage to a third party such as a user or external system. 
Here we attempt to look at some of the areas where we should guard against vulnerabilities. We do not 
consider general security vulnerabilities related to non grid specific software – these are addressed in 
many other places. We consider two main areas:-- 
1) Vulnerabilities associated with a Grid environment 
2) Vulnerabilities associated with Grid Specific Middleware. 
In chapter 2 we describe some of the problems that may result from a vulnerability, who we are 
protecting from, some general information on vulnerability protection. Chapter 3 contains a checklist 
of things to take care of to prevent or reduce middleware vulnerability. Chapter 4 contains a checklist 
for the deployment of a grid system.    Chapter 5 suggests how to describe and handle specific 
vulnerabilities which are found in the middleware or the deployment. Chapter 6 lists some ‘anti use 
cases’, things that must be prevented. Chapter 7 presents tables for checking the middleware and 
deployment described in chapters 3 and 4. 

1.2. APPLICATION AREA 
This is lead by the GridPP project, and is relevant to all grid middleware and deployment. 

PUBLIC  6 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 

1.3. REFERENCES 
[R1] DataGrid Security Requirements and Testbed-1 Security 

Implementation,  D7.5,  
https://edms.cern.ch/document/340234/  

[R2] DataGrid Security Design, D7.6 
https://edms.cern.ch/document/344562/

[R3] DataGrid Final Security report, D7.7 
https://edms.cern.ch/document/414762/

[R4] EGEE  JRA3 (Security) User Requirements Survey  
https://edms.cern.ch/document/485295/

[R5] EGEE Global Security Architecture DJRA3.1 
https://edms.cern.ch/document/487004/

[R6] The European Policy Management Authority for Grids 
(PMA) http://www.eugridpma.org/

[R7] Guide to LCG Application, Middleware & Network 
Security 
Ian Neilson. CERN  edms document 452128 
https://edms.cern.ch/document/452128/

[R8] Secure Coding – Principles and Practice. Mark G. Graff 
and Kenneth R.van Wyk  2003 O’Reilly & Associates 
Inc. ISBN 0-596-00242-4 

[R9] Secure Programming Cookbook for C and C++  John 
Viega & Matt Messier. 
2003 O’Reilly & Associates Inc. ISBN 0-596-00394-3 

[R10] EGEE Activity Quality Plan – JRA1  
https://edms.cern.ch/document/475557/

[R11] LCG incident response 
https://edms.cern.ch/document/428035/

  
  
 
 

1.4. DOCUMENT EVOLUTION PROCEDURE 
This document is designed to be a tool to help reduce the number of vulnerabilities in both the 
middleware and the deployment.  It is a technical document, which is not a formal delivery, which is 
expected to evolve over time as we better understand how to detect and handle Grid security 
Vulnerabilities.   The editor will amend the document to improve it taking input from the GridPP 
project as well as the various Grid security interest groups, such as the Joint Security Policy Group 
(JSPG), EGEE Middleware Security Working Group, and the EGEE JRA3 Security Workpackage.  

PUBLIC  7 / 61
 

https://edms.cern.ch/document/340234/
https://edms.cern.ch/document/344562/
https://edms.cern.ch/document/414762/
https://edms.cern.ch/document/344562/
https://edms.cern.ch/document/344562/
http://www.eugridpma.org/
https://edms.cern.ch/document/452128/
https://edms.cern.ch/document/475557/
https://edms.cern.ch/document/428035./


 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
 

1.5. TERMINOLOGY 
 
Glossary 
  
EGEE Enabling Grids for E-Science in Europe (EU funded project) 

http://egee-intranet.web.cern.ch/egee-intranet/gateway.html 
JRA3 The EGEE  Joint Research Area 3, Security   
JSPG Joint Security Policy Group (Security Group for the LCG project) 
LCG Large Hadron Collider Grid Project  
MWSG EGEE Middleware Security Group 
  
  
  
 
Definitions 
  
  
  
  
 

PUBLIC  8 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

2. SECURITY VULNERABILITY DESCRIPTION 

2.1. WHAT SHOULD WE BE PROTECTING? 
Here we briefly describe the main areas that need protecting. 

2.1.1. Protecting the system 
This is about ensuring the system is available to those who have legitimate access. This tends to be the 
first thing people consider, it is what conventional computer security is generally about.  This is 
particularly true of systems run by large organisations, they wish to protect the system from:-- 

1. Intrusion by an unauthorized person. In particular a person who may have malicious intent or 
wishes to use facilities for unlawful activities. 

2. From someone with legitimate access gaining access beyond their right. 
3. From someone with legitimate access doing something which causes damage to the system, 

whether intentionally or not. 

2.1.2. Protecting data and information 
This is about ensuring that material cannot be accessed or modified beyond the rights of any principal.  
It is necessary to be sure that data or information belonging to a VO or individual user is secure and 
correct.  Functionally, in the past this has been considered by authorizing the service or use to handle 
such information, and encryption for sensitive information. We need to ensure this is effective and 
there are no ways that such information can be obtained by those who should not obtain it. This could 
include looking at how we could protect such information e.g. from being sold by an individual who 
has legitimate access. 
 

2.1.3. Protecting other systems from our Grid system 
A Grid contains a lot of resources that could be used to enable another system to be attacked. There 
are two main areas for this 

1.  Use to initiate an attack on other services 
2.  Use to crack other organisations security. 

If someone has access to the Grid, whether legitimate or not, it is important to ensure they cannot use 
the Grid to launch e.g. a denial of service attack. 
 If the Grid were to be used to e.g. crack a banks’ certificate to carry out a major fraud, we would be in 
serious trouble.  This could include a legitimate user, who uses our system to carry out a fraud and 
then vanishes! 
These are dangers we should take seriously, most other problems at present would only affect our own 
Grid and data. As soon as a grid is used as a tool to commit a crime we could be at best considered 
irresponsible for setting it up with inadequate protection. At worst… 

2.1.4. Protecting the user from the system 
The user should be protected from being held responsible for something they either did not do or did 
not intend to do. While some of this is the user’s responsibility, tools and recommendations need to be 
in place so that the user can use the system with confidence that they will neither unintentionally run 
up a large bill nor be held responsible if there is a breach of security which appears to have been done 
in their name.  
 

PUBLIC  9 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

2.1.5. Protecting those who deploy the grid 
It is important to protect those who deploy the system. For example, part of the contract of many 
people like sysadmins is that they should not knowingly install insecure software. We want to ensure 
that the middleware is as secure as possible, and agreements are formed on what is acceptable to be 
installed. 
 

2.2. WHAT ARE WE PROTECTING FROM? 
This describes the main untrustworthy entities we need to protect from.  

2.2.1. An Untrustworthy system 
The software and deployment need to be such that they work reliably, don’t contain flaws that allow 
any principal to carry out an action they should not, do not fail in such a way that provides 
unauthorized access to resources or data.  The system needs to be such that it cannot easily be 
commanded in such a way that one person can deny access to another. In particular the system should 
not copy information to untrustworthy principals. 

2.2.2. An untrustworthy administrator  
However good our technology is, an administrator of a CA, or a VO, or a Site could cause a lot of 
damage.  Also, they may be able to steal and sell information, or be paid to destroy information.   

2.2.3. An untrustworthy user  
Even though we may have granted access to a user, we cannot assume all users will use the system in 
the way it was intended. For example, a legitimate user may have access to a confidential database, 
and may be bribed to reveal information.   

2.2.4. An untrustworthy machine 
It is important to protect against an untrustworthy machine added to the Grid. 
A machine may be added to the Grid in order to attempt to gain access to information which is 
confidential.   

2.2.5. A hacker 
Someone may intend to break into the system, whether to cause damage to the system, use the system 
to attack others, use the resources for their own (possibly unlawful) purposes) or steal information. We 
need to ensure the software does not contain weaknesses that allow such access.  

2.2.6. Untrustworthy software 
This is where software behaves in a way that wasn’t intended, and it could be that no-one does 
anything with malicious intent yet the system becomes vulnerable. Such vulnerability could, of course, 
be exploited by a hacker. 
 
 

2.3. WAYS OF PROTECTING FROM VULNERABILITIES 
The general criteria for dealing with vulnerabilities are: protect, deter, detect and react. Protect means 
making the system as resistant to attack as possible.   Deter means having sanctions we can apply to 

PUBLIC  10 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

those who are caught doing something they should not. Detect means detecting when anything occurs 
that should not. React means to deal with the situation, including fixing software vulnerabilities as 
they occur. We should aim to protect as much as we can, and remove as many vulnerabilities from the 
system as possible.   Where this is not possible, we should aim to detect problems and react as quickly 
as possible.   I 
 

2.3.1. Middleware 
This is where we ask the question, does the Grid Middleware contain faults which allow non-
compliance with the security requirements?  Does the technology allow the software to be used in a 
way that exposes vulnerabilities? Are there flaws in the design, which allow the components to be 
used in a way that is not intended?  Is the implementation such that it allows certain input to cause the 
system to crash or allow unintentional behaviour?  It is important when designing and implementing 
any middleware that we consider unfriendly input and attempts to cause damage by overloading. 

2.3.1.1. Security Components 
Security components are designed to allow access after appropriate authentication and authorization 
has taken place, but deny other access. 
It is important to ensure that these components cannot be forced to fail in such a way that unauthorized 
access can be allowed, that if they do fail they fail in a way that prevents access, and they cannot be 
commanded in such a way that causes access beyond a principals rights to take place. 

2.3.1.2. General Grid Middleware 
It is important that any Grid middleware is robust, and checks all input for valid input.  
It is important that no input can cause a problem.  It is important that there are no back doors.   

2.3.1.3. Integration of Security components with Grid Middleware 
Even if security middleware has been tested and is reliable it is important to ensure that the integration 
with the various other Grid Middleware components does not present security flaws. It is important 
that it is not integrated in such a way that allows the security middleware to be by-passed.    

2.3.1.4. Principle of least privilege 
Software should run at the lowest level of privilege possible. If software runs as root, if there is a flaw 
that can be exploited, the potential for damage is much higher. This is a matter both for the design and 
implementation of the software itself, and the deployment. 

2.3.1.5. Connections 
Every service that can be connected to presents the possibility of the existence of a security 
vulnerability, this includes connections to services that are designed to only be services to other Grid 
components, including other parts of the same service.   
For example, a service may be written where the expected client is another instance of the same 
service or at least written by the authors of the service. This cannot be assumed. 
 

2.3.2. Configuration and Deployment 

PUBLIC  11 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

2.3.2.1. Reliable configuration 
It is important that the software is configured securely. Tools need to be made available to allow 
sysadmins to configure the software reliably. 

2.3.2.2. Level of logging 
There needs to be a balance between sufficient logging to enable adequate tracing of what people can 
do, and too much logging, which may cause the disk to become full, and allow a denial of service 
attack. 

2.4. GOOD PRACTICES 

2.4.1. Checking principals 
Before allowing any principal to have a role it is important to check that they are suitable. It is 
important to check that CA admins, VO admins, and system admins can be trusted and are suitable for 
the role. It is important to check the identity and suitability of sites and users, before allowing them 
credentials that allow access to the system, especially those credentials which allow access to sensitive 
data or large quantities of resources. 

2.4.2. Care over combination of roles 
Sometimes a combination of roles could lead to a principal having freedom to do a lot of damage.  For 
example, if someone was both a CA admin and a VO admin then he could issue a false identity and 
VO credentials to himself and gain access to resources beyond what is intended. 
 

2.4.3. CA and VO procedures 
Much has been discussed about the Certification Authority procedures, and ensuring that the identity 
of a user is checked. Ref – [6] It is important that both Certification Authorities and Virtual 
Organisation have good procedures in place.  
 

2.4.4. Management of Secrets 
Are security secrets such are passwords and private keys properly protected?  Are well known user 
name and passwords used?  This applies to both services themselves and to databases behind the 
services as well as users.  In particular, is the host certificate private key secure? 
 

2.5. MECHANISMS FOR PREVENTING OR DETECTING MISUSE 
It is important to have in place mechanisms for preventing or at least detecting misuse.   

2.5.1. Logging and processing of logs  
It is important that adequate logging and processing of logs is carried out, as logging usage can help 
detect misuse, both by a hacker and by a legitimate user.  
For example, if a legitimate user has access to confidential data, and they access beyond what is 
needed to do their job, then logging access and processing of such logs may allow this to be detected.  

2.5.2. Usage tools 

PUBLIC  12 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

If a user attempts to use the Grid to carry out processing that is not legitimate then we may be possible 
to prevent such usage. One way may be to only allow software signed by a VO to be used.   If users 
wish to use their own software, maybe they should register a copy of the source code with the VO, and 
this should be built by the VO. This does not prevent usage for illegal purposes, but it could make 
such detectable.  Another is to carefully control quota, and people who have a large quota which could 
be used to e.g. crack certificates, can only use software that is checked out by the VO. 

2.5.3. Service version checking 
Can we be sure that the software used in the services is the intended version? Could it have been 
replaced e.g. by an unreliable sysadmin or hacker?  A mechanism for ensuring unfriendly software is 
not on the system should be in place.   

2.5.4. Incident Response 
It is important to have an incident response plan in place, which allows fast and efficient dealing with 
any breach of security. The LCG project has such a plan, described in the LCG Incident response 
document. Ref – [11]. 
 

2.6. VULNERABILITY DETECTION THROUGH USE OF CHECKLISTS 

2.6.1. Principle 
Much of the rest of this document consists of checklists for middleware and deployment.  
Vulnerability avoidance is a huge subject, and there are many books on the subject, e.g Ref [8]. We do 
not attempt to repeat everything that can possibly be checked from all sources, but provide a checklist 
of some of the more important things that we should check.  Some vulnerabilities probably mean new 
middleware functionality is needed, or a new tool is needed to guard against such vulnerabilities. 
Some are just a matter of fixing a bug or fixing software to work in other ways. Some vulnerability is 
a matter of configuration and deployment.  

2.6.2. What does satisfying each check give us? 
Some checks are more specific than others. Some of the checks are to do with avoiding specific 
vulnerabilities that are well defined. Some of the checks are more to do with good practice to 
minimize the risk of introducing some sort of vulnerability, or to minimize the damage that can be 
done. Some of the checks are for the existence of tools that prevent or detect misuse. We indicate what 
we are checking for when by carrying out each check. 
SV – Specific Vulnerability    
VRR – Vulnerability Risk Reduction – a practice that if carried out is likely to reduce the risk of there 
being vulnerabilities. 
VIR – Vulnerability Impact Reduction – a practice that if carried out is likely to reduce the impact of 
any vulnerability present. 
ADL – Activity Detection and Logging – this allows the detection of any exploitation of a 
vulnerability or an abuse of the system.  
This should help avoid or reduce the risk from vulnerabilities, however we do not claim it is complete, 
and we do not claim that there is no way round the checklists – they are simply an aid to help reduce 
vulnerabilities. 
 

PUBLIC  13 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

2.7. DISCOVERY OR AWARENESS OF SPECIFIC VULNERABILITIES 
Some implementers and system administrators are well aware of the existence of various 
vulnerabilities, and have mentioned them in various discussions both person to person and via e-mail. 
Such vulnerability should obviously be fixed whenever possible. It should at least be noted in a 
systematic manner, and if it cannot be fixed immediately the risks associated with it should be 
assessed.    Any note of specific vulnerabilities must be kept private, and access must be carefully 
controlled.  Details are given in chapter 5. 
When a specific vulnerability has been noted, those analysing it should consider if anything in one of 
the checklists used to minimize vulnerability would have picked it up or prevented it. If there isn’t, 
then consider proposing an appropriate check.  This may help prevent or detect other vulnerability in 
the future. 
Care should also be taken concerning the publication of bugs, as these may represent vulnerability.  
The practice of logging bugs on a world readable database should be re-assessed.  
Some Vulnerability may be the result of the combination of the way a multiple of packages or tools 
work, such possibilities need to be considered. 
It is worth considering who could take advantage of a vulnerability.  Someone without any credentials, 
such as a hacker?  An authenticated user?  A user with some Authorization? A system administrator? 

2.8. RELATION TO RISK ASSESSMENT 
The finding and elimination of vulnerabilities is related to risk assessment, it is about reducing certain 
risks.  But it is not a risk assessment in itself. Anyone who finds that a vulnerability is present, whether 
through discovery by the application of a checklist, or just being aware of it may want to consider 
what risk that poses, both in terms of the likelihood of exploitation and the impact if it is exploited. 

PUBLIC  14 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

3. MIDDLEWARE VULNERABILITY CHECKLIST 

3.1. DESIGN 
This is where we look at ‘does the design itself logically introduce vulnerabilities’ and ‘does the 
design mean that if there is vulnerability can a lot of damage occur very rapidly?’ 
 
DES-01  
Carrying out a design process 
If the design is carried out using good practices, then it is less likely that vulnerabilities will be 
introduced.  When carrying out the design it is important to ensure the design is clear and well 
documented. It is important to document all connections, especially those external to the component, 
or between different parts or instances of the middleware component. 
Check that there is a good design in place, and that it describes the components and all 
interconnections.  
VRR 
 
DES-02 
Design for robustness 
Carry out a design such that if one part of the installation fails it does not cause the whole system to 
fail. Design such that if it is impossible to reach one part of the network, or if one part of the system is 
not working, compromised or incorrectly configured it does not mean the whole system fails.  
Check this has been considered. 
VIR 
 
DES-03 
Principle of least privilege 
 When carrying out the design it is important to consider what privileges the executing software should 
have, and make design decisions which limit these.  This is also a deployment issue, the software 
should not run with privileges it does not need. In particular, not all software should run as root. 
Check the privileges the software needs. Can these be reduced?  Are they well documented?  Is the 
default configuration just what it needs?  
VIR 
 
DES-04 
Formal Analysis 
One method carried out by computer scientists is formal analysis of the design. This looks for logical 
vulnerabilities from a very neatly specified design. 
This could be carried out in the future if appropriate expertise were to be made available.  
SV 
 
DES-05  

PUBLIC  15 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Informal Analysis 
This is where we go on a thought experiment ‘how do we get round this’, or ‘can this system be used 
to do x and y’.  This is a useful experiment that we could carry out. 
SV 
 
DES-06 
Think about risks 
Ask the question: are there any particular risks associated with this particular piece of middleware? If 
there are, think about whether they are handled. 
VRR 
 
DES-07 
Discovering loopholes 
This is where as a result of testing or usage specific loopholes are discovered. 
Document loopholes – but not for public consumption! Ensure they are fixed at the earliest 
opportunity.  More on this is in chapter 5.  
Check that known loopholes/vulnerabilities are handled. 
SV 
 

3.2. CODING PRACTICE 
There is no coding practice that guarantees vulnerability or bug free code. But good coding practice 
reduces the chances of vulnerabilities being unwittingly introduced.  
 
CP-01 
Code Re-use 
Re-use well tested code where possible. Software which has been subjected to extended analysis and 
use is less likely to have exploitable security holes than new software. 
Check that when appropriate existing software is re-used and integrated with new middleware. 
Ref – [7] 
VRR 
 
CP-02 
Clarity 
Code for clarity first and optimize during testing if necessary. 
Complexity is the enemy of security. Well-structured, clear code allows for better understanding of 
intent and appropriate algorithms. It also reduces the likelihood of the introduction of errors which 
may lead to security vulnerabilities. 
Check that coding standards are in place, and that the code is clear and readable. 
Ref – [7] 

PUBLIC  16 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

VRR. 
 
CP-03 
Check good quality procedures have been carried out.  
Check what procedures are in place 

VRR 

 
CP-04 
Code quality indicators 
Use of quality code indicators can help indicate for example how stable the developed code is.  
Check any quality indicators in place, if they are then look at their values. E.g. EGEE development 
specifies some quality indicators in Ref – [10]. 
VRR 

3.3. COMMUNICATIONS 
COM-01 
Use established protocols 
Do not invent new protocols when existing ones can be used.  It is often tempting to assume that for 
performance or other reasons an application requires a new or modified protocol to be developed. 
Experience shows that this is usually not the case and existing standards which have been open to 
study and use over an extended period of time avoid the many subtle failures that can be induced in 
the development of security protocols. Ref –[7] 
Check that established protocols are used for all connections. 
VRR 
 
COM-02 
Use well tested software 
In particular, for communications, try to avoid writing your own software if at all possible. If 
appropriate established software is available then use this. 
Check that well established software is used. If it is not (e.g. the appropriate software was not 
available in the appropriate language) check that it has been very well tested. 
VRR 
 
COM-03 
Authentication 
It must be possible to authenticate and check the integrity of all network communications.  (e.g. with 
GSS API, GSI API). 
Ensuring that communicating parties are trusted (or at least known) and that communications are not 
altered makes it much harder for malicious or accidental behaviour to damage the system without 
being traceable to a cause. Ref- [7] 

PUBLIC  17 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Check that authentication is in place. If it is not, consider the possible impact and consider adding 
authentication. 
SV, ADL 
 
COM-04 
Fail authentication if any data is missing 
If any files or other information is missing, for example the Certificate Revocation list, which is 
expected to be there by the authentication process, the authentication must fail. 
Check this is the case 
SV 
 
COM-05 
Disconnect on Authentication Failure 
The principal must be disconnected if the authentication fails.   
Check that the Authentication method causes a disconnection when authentication fails. Check that the 
authentication method is integrated in such a way that the principal disconnects completely if the 
authentication fails. 
SV 
 
COM-06 
Encrypt sensitive information 
Any network communication containing sensitive or personal data should be encrypted. Ref - [7] 
Check that sensitive information is encrypted. 
SV 
 
COM-07 
Consider the impact of high connection request rate  
Consider what will happen if a principal makes a high number of requests to connect, whether 
authenticated successfully or not. Consider the impact on the system and how it will be handled so that 
it degrades appropriately. 
SV. 
 
COM-08 
If possible, check the authentication credentials against other information 
If there are other sensible things to check, then carry out such checks. For example, if a service is 
authenticating using a host certificate, carry out a hostname check. This reduces the chances of 
authentication taking place using stolen credentials. 
SV 
 
 

PUBLIC  18 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 

3.4. INPUT CHECKING 
It is important that you do not assume all input is valid, or from a friendly user or client.  More is said 
in Ref – [9]. 
 
INP-01 
Validate all input  
All input should be validated, to ensure that the processing doesn’t attempt to process invalid input 
which may cause the program to crash or behave in a way that is not intended. 
Check that all input is validated.  
VRR. 
 
INP-02 
Validate at each connection 
Don’t assume that the client is friendly or the intended client is used. A piece of software may have 
been written which is only expected to be used as a service to other parts of the system with the client 
also provided by the author. This must not be assumed, an attacker will look for weaknesses in the 
system. This does not mean that for convenience and efficiency clients shouldn’t check that input from 
the user is valid. 
Check input is validated at each connection point. This is essential 
VRR. 
 
INP-03 
Validate at all levels 
It is preferable to validate all input to e.g. all classes or subroutines. 
Check input is validated at all levels. This is preferable. 
VRR. 
 
INP-04 
Look for valid input 
It is better to look for input that is understood and valid, and reject anything else.  
(This does not mean that checking for potentially threatening input cannot be done additionally.) 
Check that this is done.  
VRR 
 
INP-05 
Check that input values are within an acceptable range 
Check that all input values are within an acceptable range that can be handled by the program. 
Check this is done 

PUBLIC  19 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

SV 
 
INP-06 
Scan for potentially dangerous input 
If input contains a system command, then it is possible that this command could get executed on the 
system.   Similarly checking for inclusion of URLs when they are not expected may reduce the risk of 
vulnerability.  If input is expected in alpha-numeric form, check that there are no non alpha numeric 
characters in the input. 
Check that input is scanned for invalid input. 
VRR. 
 
INP-07 
Check for input that links to input or fetches input from elsewhere. 
If the input includes or fetches input from elsewhere either reject it, or check the entire input including 
that fetched from elsewhere. 
Check that no import can be linked from elsewhere, or if it is the validity is checked. 
VRR 
 
INP-08 
Reject if input is invalid 
Reject with an error message and disconnect if the input is invalid. This is highly recommended, rather 
than attempting to clean up or convert to valid input. 
Check invalid input is rejected. If not check it is sanitised adequately and consider whether it poses a 
risk. 
VRR 
 
INP-09 
Handle a high load. 
Implement a strategy for handling a high load on the system. The system should degrade gracefully 
and still function. 
Check that such a strategy is in place. 
SV 
 
 

3.5. BUFFER OVERFLOWS 
Some programming languages (in particular C and C++) contain flaws in their string handling that 
allow buffer overflows to take place.    This can cause a program to crash, or even allow the program 
to be commanded to do what was not intended. 
 
BUF-01 

PUBLIC  20 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Don’t use gets()  
This is the most risky in C and C++. Avoid using this. 
Check that it isn’t there. Re-code if it is. 
SV 
 
BUF-02 
Avoid risky constructs 
Many constructs are risky in C, C++. For a list of risky constructs and more information on buffer 
overflows see 
http://www-106.ibm.com/developerworks/library/s-buffer-defend.html
Also see Ref – [9] 
Check that risky constructs are not used, or if they are the potential risks have been avoided. Consider 
using a well tested string handling library such as SafeStr (http://www/zork.org/safestr/). 
SV 
 

3.6. UNWELCOME CODE BEHAVIOUR 
Sometimes a well designed and neatly coded system can contain flaws where in certain circumstances 
the code behaves in a way that isn’t welcome. Such things include signed to unsigned coercion, 
overflowing integers.  If the software can fail in certain circumstances, this can cause a denial of 
service, whether intentional or not. Most code unwelcome code behaviour is avoided by careful 
design, coding and testing. However, we point out a few additional things here that should be checked. 
 
UCB-01 
Ensure all variables are typed 
Check that all variables are typed. 
SV 
 
UCB-02 
Ensure all variables are initialized 
Check that all variables are initialized 
SV 
 
UCB-03 
Ensure variables remain in range 
E.g. before adding two variables together,  it is important to ensure check that they are not too large. 
Before incrementing a counter, check that it is not going to cause the integer to overflow. 
Alternatively, this can be done by ensuring input values are restricted such that overflows cannot 
occur. 
Check that such checks are done before adding or incrementing. 
SV 

PUBLIC  21 / 61
 

http://www-106.ibm.com/developerworks/library/s-buffer-defend.html


 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
UCB-04 
Check conversion of variables 
Ensure that if variables are converted from one type to another, this is done correctly. Ensure that there 
is no implicit casting of variables e.g. by other functions or classes which might have undesirable 
effects. 
Check through the code looking for likely problems 
SV 
 
UCB-05 
Clean memory when allocating 
It is important to ensure memory allocated is clear, so that it does not contain any ‘left over’ 
information that may cause a leak of information or undesirable effect at some point. (E.g. with C and 
C++ use calloc rather than malloc) 
Check appropriate memory allocation. 
SV 
 
UCB-06 
Erase memory after usage 
This must be carried out after using sensitive data, including passwords, encryption keys and other 
confidential data. It should also be carried out at other times.  
Check this is carried out. 
SV 
 
UCB-07 
Avoid memory leaks 
Check that appropriate memory clearing is carried out, and that the program doesn’t consume ever 
increasing amounts of memory.   
SV 
 
UCB-08 
Avoid thread build-up 
Take care on the handling of threads, to ensure that large numbers of threads do not get into use. This 
may be done by using a thread pool.  
Check that the number of threads does not keep increasing with time.  
SV 
 
UCB-09 
Limit no. of connections or sockets 

PUBLIC  22 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Avoid a large number of connection or sockets build up, e.g. by counting the number of sockets and 
limiting the number allowed. Ref – [9] 
Check this is done. 
SV 
 
UCB-10 
Check looping 
Check that the program cannot get into and endless loop. E.g. a while statement cannot continue 
indefinitely.  
SV 
 
UCB-11 
Use formatting functions carefully 
Certain use of formatting functions can expose vulnerabilities. E.g. in C printf and syslog can cause 
problems, Ref – [9] so they are best avoided. 
Check your appropriate language if you include formatting. 
SV 
 
 

3.7. CONFIDENTIAL DATA 
In addition to practices associated with unwelcome code behaviour, such as clearing memory after 
usage, it is important to take special care when coding software that does or may handle confidential 
data. 
 
CON-01 
Represent keys as byte arrays 
Keys should be represented within the code as byte arrays, and not as integer arrays. Ref – [9] 
SV 
 
CON-02 
Store keys securely 
Keys, whether they be private keys from the PKI structure or whether they be symmetric encryption 
keys used for the storage of confidential data must be stored securely. They must at least be password 
protected as well as not world readable. It is recommended that recognised methods for the secure 
storage of information are used. 
Check this is done 
SV 
 
CON-03 
Avoid caching sensitive data 

PUBLIC  23 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

It is important that someone with legitimate access to a system cannot access sensitive data as the 
result of operating system activity, in particular caching. This is especially true for passwords and 
encryption keys.  
Check appropriate measures are taken, e.g. using a recipe in ref – [9] 
SV 
 
CON-04 
Delete files securely 
Ensure that files that may contain confidential information are deleted in a secure manner. Just 
deleting them is not adequate, the information may still be present and  a may still be recovered from 
disk. Use an appropriate recipe for cleanly deleting the file and information, e.g. in ref –[9] 
Check this is done 
SV 
 

3.8. BACKDOORS 
It is important to check that there are no backdoors into the system. If there are, all other checks can be 
meaningless as they can be by-passed. 
 
BCK-01 
Test backdoors 
When writing the code, certain backdoors may have been introduced to enable easy testing. These 
could be in a form of e.g. a special command to access the system.  Ensure that these are removed 
before the software is distributed or released.  
Check any such backdoors have been removed. 
SV 
 
BCK-02 
Database access backdoors 
It may be possible to do damage to the system by accessing a database the software depends upon.  It 
is important to ensure that access to such a database is carefully controlled, e.g. isn’t accessed by a 
commonly known user name and password, and isn’t on a machine accessible to users. 
Check how any database is accessed by the system. 
SV 
 

3.9. MIDDLEWARE ACCESS TO THE SYSTEM 
As stated earlier, it is important that the middleware runs on the least privilege basis, to minimize the 
impact of any vulnerability.  
 
MAS-01 

PUBLIC  24 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Restrict connectivity 
Ensure appropriate firewalls are in place, and onward connectivity is strictly controlled.  
Check this is the case. 
SV 
 
MAS-02 
Restrict ability to execute other programs 
Ensure that the middleware cannot be induced into executing a program that it should not, such as a 
Trojan or virus. 
(Look up on how to do this.) 
SV 
 
MAS-03 
Use of Environment Variables 
It is possible for an attacker to sabotage the environment variables. 
See [R3]. Only use environment variables if there is no alternative, for example use a configuration 
file to set information.  Any environment variables must be treated as un-trusted third party input. 
SV  
 
MAS-04 
Restrict ability to start child processes 
If a user can start a child process then they may be able to leave something behind that can do damage 
later.  
SV 
 
(needs more) 

3.10. EXPOSING INFORMATION ABOUT THE SYSTEM 
Also see file handling – allowing access to the file system could expose information about the system. 
Also see UCB-05, FIH-01 
 
EXP-01 
Disable Core dumps 
In unix with C or C++ in particular, core dumps may reveal information that should not be revealed. 
Check core dumps are disabled. 
SV 
 
EXP-02 
Ensure Error messages don’t expose inappropriate information 

PUBLIC  25 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

It is possible that error messages could reveal information that should not be revealed. Take care that 
error messages cannot be used by a hacker to obtain information about a system that should not be 
disclosed. 
SV 
 

3.11. FILE HANDLING 
It is important that a hacker is not able to obtain information or interfere with the system by accessing 
or modifying files they should not. See also CON-04 
 
FIH-01 
Access Control 
Ensure access control is set so that the program cannot access files it should not access, for example 
system files.  
Check what files the program can access. 
SV 
 
FIH-02 
Ensure the program builds the location of a file 
The program should not take input from an external source concerning the location or directory of the 
file, this should be constructed by the program itself, for example from a logical file name. 
Check this is the case. 
SV 
 
FIH-03 
Check use of relative file names. 
Relative file names can make it possible to change a reference from the file working directory to 
another directory.  Ensure that if relative file names are used, the program accesses the appropriate 
directory and does not allow the user to move up the tree.  Ref – [8] 
Check this. 
SV 
 
FIH-04 
Don’t make access decisions based on environment variables 
Such variables might not take on the correct value. 
Check this. 
SV/VRR 
 
FIH-05 
Don’t refer to a file twice in the same program by its name 

PUBLIC  26 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Open a file and use the file handle or other identifier from then on, this prevents the file being 
substituted by another one between references. Ref – [8] 
Check this. 
SV 
 
FIH-06 
Reject input that may influence the path. 
Ensure that the user cannot force the program to access files it should not by requesting a filename 
including a path to that filename.    
Check this. 
SV 
 
FIH-07 
The program should not accept input if it contains the potential to move up the directory tree 
For example, input containing things such as ../  in unix should be rejected. 
Check this is the case. 
SV  
 
 
FIH-08 
Restrict size of temporary files 
It is important to consider the size of temporary files in the system, and ensure that they cannot be 
used to fill up all disk space and cause a denial of service attack. 
Check that the temporary file sizes are carefully controlled and handled. 
SV 
 
FIH-09 
Avoid world readable files 
Check this is done 
SV 
 
FIH-10 
Don’t trust user-writable storage not to be tampered with 
Treat anything read from user-writable storage as non-validated input, and check it’s validity before 
processing 
Check this is done 
SV 
 
FIH-11 

PUBLIC  27 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Ensure file permissions are set correctly  
If middleware writes files, whether these be for future access by the user or to enable the middleware 
to function check the file permissions are set correctly. It is important that these cannot be modified by 
anyone that should not be able to modify them, and should not be readable by anyone who should not 
be able to see them. 
SV 

3.12. AUTHORIZATION 
 
Most actions should only be carried out by an authorized principal.  However, there may be a few 
exceptions, such as access to public information.   
 
AUZ-01 
Authorize the action  
Check that authorization to carry out the action is in place, or if not there is a very good reason why 
authorization is not necessary and not a threat. 
SV 
 
AUZ-02 
Authorize all job execution 
Carry out authorization if a user is to be running a job where they are submitting any code to be 
executed. 
Check that Authorization is carried out.   
SV 
 
AUZ-03 
Use established authorization tools where possible 
As far as possible, use established tools. In the case of course grained authorization use the grid 
authorization tools developed jointly by the various projects. In the case of fine grained authorization, 
ensure common tools are used to check the credentials and pass on the validated credentials to the 
service. 
Check this is the case. 
VRR 
 
AUZ-04 
Check Credentials are valid on connection 
Whether course grained authorization is appropriate, or fine gained, the validity of the credentials 
should be checked on connection prior to the authorization decision point. 
Check this is the case 
VRR 
 

PUBLIC  28 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
AUZ-05 
Disconnect if invalid Credentials are presented. 
Whatever authorization the service requires, if a principal presents credentials that are invalid or out of 
date, or if the checking fails in any way disconnect the principal.  
Check this is the case. 
SV 
 
AUZ-06 
Disconnect if full checking cannot be carried out 
If any of the data needed to carry out authorization is missing, disconnect rather than allow the 
connection to continue with incomplete checking 
SV 
 
AUZ-07 
Disconnect on failure if access to resource is denied. 
If authorization is course grained, i.e. the question is whether or not the principal can access the 
resource, disconnect if the authorization fails. 
Check this is the case. 
SV 
 
AUZ-08 
Use ‘Default Deny’ strategy 
Base the authorization logic on default deny as far as possible, and only allow access if the principal 
matches the criteria. This prevents any access by default.  This does not prevent having e.g. a list of 
users who are denied access even if they satisfy other criteria. 
Check this is the case. 
VRR  
 
AUZ-09 
Check fine grained Authorization carefully 
If the software uses fine grained authorization, special care needs to be taken as although security 
middleware may be able to check the credentials and pass them into the system, it is up to the 
middleware itself to compute the authorization decision. 
Check code very carefully. 
VRR 
 
 

3.13. USAGE 

PUBLIC  29 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

The aim should be to allow the system to be used for legitimate purposes, but not abused. The aim 
should also be to allow all legitimate users to gain access, and not be blocked due to excessive use, 
whether the usage is due to a large legitimate job having being submitted or due to the software 
behaving in a way it should not and using an excessive amount of resources. 
 
USE-01 
All usage of resources should be self-limiting. 
The programs should be written such that they do not take up all the resources. 
Check this is done 
SV 
 
USE-02 
Quotas 
Have a quota on usage, this will help prevent a denial of service attack by over use of the system, or 
filling up disk space.  It also prevents extreme accidental over use, if a user has unwittingly executed a 
program that requires a huge amount of resources. 
Check some sort of quota mechanism is in place. 
SV 
 
USE-03 
Restrict what software can be executed 
A large amount of resources could be used to crack a private certificate.  
To avoid this restrict what software can be used. This could be done by only allowing packages signed 
by a particular VO or other appropriate organisation to be used. 
Check what is done to restrict usage and document any specific risks. 
SV 
 
USE-04 
Monitor usage 
Usage should be logged, as stated in the logging section. 
Have a tool in place that allows the usage to be monitored, especially users of large amounts of CPU. 
Check some sort of tool is available. 
ADL 

3.14. DEPENDENCIES 
 
DEP-01 
Consider whether the dependency is necessary and appropriate 
Care should be taken with dependencies, to ensure you only use ones that are well tested and reliable.  
If there is a vulnerability in the dependency, however carefully you code your own software  

PUBLIC  30 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Check through dependencies, and see if they are from trustworthy sources 
VRR 
 
DEP-02 
Document dependencies 
Document all dependencies, including the earliest version that is acceptable. This is to ensure that a 
vulnerability is not introduced due to installing an old un-patched version. 
Check that such documentation exists. 
VRR 
 
DEP-03 
Ensure a later version of the dependency can be used 
If possible, do not write the software such that it depends on a specific version of a dependency, 
ensure that it is written such that a later version can be used. This is particularly important if a 
vulnerability is found in the dependency, and it is necessary to upgrade the dependency. 
Check that it is possible to run software with a later version. Check any appropriate tools that check 
for version on installation, e.g. check that they specify an earliest version rather than a specific version 
if possible.  
VRR 
 
 

3.15. ERROR HANDLING 
However carefully a system is written and tested, it may still contain bugs and fail in some way.  It is 
important that it fails in a way that does not expose a vulnerability, in particular does not allow a 
principal unauthorized access.  It is also important that errors due to problems with the code are found 
quickly and easily, so that they can be fixed.   When an error occurs e.g. due to lack of resources, loss 
of network or communication, determining the cause of the problem and subsequent corrective action 
is greatly assisted by appropriate logging. It is also important that the error messages don’t expose 
information to a hacker that may be useful to them, so errors presented to the user need to be carefully 
formulated, EXP-2.  Possibly further information needs to be logged in a way that is not accessible to 
the user, so the problem can be found.  
 
ERR-01 
Detect Errors 
Errors should be detected 
ADL 
 
ERR-02 
Log Errors 
Errors should be logged on the system. Sufficient logging should occur to allow the cause of the 
problem to be determined by the people responsible for the system 

PUBLIC  31 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

ADL 
 
ERR-03 
Report Errors 
Errors should be reported to the appropriate user or other principal.  
Appropriate errors should be reported to the user, so that the user can determine whether their input or 
credentials are at fault, or whether the error is due to a problem with the system. Errors should be 
reported to other appropriate principals so the cause can be determined. 
Check this. 
ADL/VRR 
 
ERR-04 
Have informative error messages 
Error messages should be clear to understand, and find what has gone wrong. This helps us find the 
source of the problem. 
Check this. 
ADL 
 
ERR-05 
Degrade gracefully 
The software should degrade and fail gracefully if at all possible, which reduces the risk of a 
vulnerability being left open. 
Check there is something in place to degrade/ recover gracefully. 
VRR 
 

3.16. FAILURE 
 
At some point software may crash, and it is important that this does not pose additional problems such 
as allowing unauthorized access or revealing secrets. 
See also EXP-01 
 
FAI-01 
Have a ‘Fail Safe’ strategy 
If the software crashes, or experiences an error it cannot recover from, it is important that it is left in a 
state that can do no harm. Consider what this state is, and take steps to leave it in a safe state. 
Check whether this has been done, and whether the ‘fail safe’ strategy is a good one. 
VIR 
 

3.17. LOGGING MECHANISMS 

PUBLIC  32 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
LOG-01 
Log all security ‘state’ transitions 
Log security state transitions: connected, authenticated, authorized (if appropriate coarse grained 
authorization is carried out) and disconnected. 
Check that mechanisms are in place to log these. 
ADL 
 
LOG-02 
Log access to resources 
Ensure that logging mechanisms are available that allow for the logging of access to resources 
Check mechanism is in place. 
ADL 
 
LOG-03 
Log usage of resources 
Ensure that logging mechanisms are available that allow for the logging of usage of resources 
Check mechanism is in place. 
ADL 
 
LOG-04 
Traceable logging 
Ensure that the logging mechanisms include recording of the users credentials (e.g. DN, VO 
membership and roles) that enable access to be authorized. 
Assess the mechanism in place. 
ADL 
 
LOG-05 
Configurable logging 
Ensure that the logging mechanisms are configurable, so that logging required can be set up.  For 
example in some cases it may only be necessary to log that a particular principal has accessed a 
database, in other cases it may be necessary to log exactly what has been accessed.   
Assess the mechanism in place. 
ADL 
 
LOG-06 
Non-Repudiation 
Logging should be carried out in such a way than an action cannot be denied. Logging needs to be 
carried out in such a way that it cannot later be altered (including by sysadmins) without detection. 
Check whether there is a non-repudiation mechanism. 

PUBLIC  33 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

ADL 
 
LOG-07 
Tools 
Tools must be available that allow easy analysis of the logs, including detecting abnormal usage, 
disallowed usage such as access using a service certificate when a user certificate is required. Also, 
tools should allow any appropriate operator to easily find problems. 
Check they are in place 
ADL 

3.18. SPECIFIC CHECKS ON SECURITY MIDDLEWARE  
 
It is particularly important that security middleware works reliably, and does not behave in a way that 
allows unauthorized access. All other checks as described here still apply.   
 
SMW-01 
Check each language 
There are APIs and middleware to carry out Authentication and Authorization in various languages to 
the security system. These all need to be checked.  We need to ensure that these are examined at tested 
with the same rigor as all other tests. 
Check this is done.  
SV/VRR 
 
SMW-02 
Ensure credentials are properly checked 
The software needs to be carefully examined and thoroughly tested to ensure that the credentials 
properly checked and passed into the system.  
Check this  
SV/VRR 
 

3.19. INTEGRATION OF SECURITY MIDDLEWARE WITH OTHER MIDDLEWARE 
 
ISM-01 
No By-pass for the security 
Check that the security middleware is integrated with other middleware does not allow for a bypass of 
the security middleware. The security middleware should be on front of the other middleware, and not 
allow the other middleware to be accessed if the security check fails. 
Check this is the case. 
SV 
 

PUBLIC  34 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 

3.20. TESTING 
 
Most people are aware that it is important to test software thoroughly.  All applications should be 
tested for function and fault conditions.  Remember that friendly inputs cannot be assumed. Ref – [7]. 
 
 
TEST-01 
Test with potentially threatening input 
Consider what input may present a threat to the software, and test with this as well as any functional 
testing.  This should be rejected and give an error and disconnection. 
VRR 
 
TEST-02 
Test with random input 
All such input should be rejected, unless in the unlikely case that some is valid. 
Check such tests are carried out. 
VRR 
 
TEST-03 
Test with long random strings   
This is good for general input checking too. Construct a test which throws long random strings at the 
software, and see it is possible to cause the software to crash or behave in an undesirable way. 
Check has been done, or do it. 
SV 
 
TEST-04 
Test with input just in range 
The software should be tested with input just in range, to ensure that it is processed correctly. 
Check such tests are carried out 
VRR 
 
TEST-05 
Test with input out of range 
The software should be tested with input out of range, to ensure that it is successfully rejected. 
Check this is done. 
VRR 
 

PUBLIC  35 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

TEST-06 
Test with a high load. 
Carry out some tests with a high load. Test with more input than the system can handle, ensure the 
software degrades sensibly. 
Check such tests have been carried out. 
VRR 
 
TEST-07 
Test for memory leak 
Carry out tests that stress the system over a length of time, to ensure that no memory leaks occur. 
Check this is carried out. 
SV 
 
TEST-08 
Test for thread build up 
Carry out tests over a length of time, to ensure threads don’t build up. 
Check this is carried out. 
SV 
 
TEST-09 
Test with input containing the potential to move up the directory tree  
Check such input is rejected. 
SV 
 
TEST-10 
Test at all connection points 
Tests should be carried out at all potential connection points. For example, if a service normally 
expects another part of the package to act as the client, then the service should still be tested as if it is a 
stand alone service.  
Check such testing is done 
SV 
 
TEST-11 
Test with invalid Credentials 
Tests should be carried out using credentials that are invalid. This should include Credentials from 
authorities that are not accepted, as well as out of date credentials. 
Check that such credentials are rejected, and connection is not allowed. 
SV 
 

PUBLIC  36 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

TEST-12 
Test with missing and invalid security files 
Test with each required security file missing and invalid in turn. (e.g. for authentication the public 
certificate, the certificate revocation list, the signing policy file) 
Check that in each case the connection is rejected. 
SV  
 
TEST-13 
Test with requests beyond the principals rights 
Check with valid credentials, but try and request access beyond the rights of the principal. 
Check such requests fail. 
SV 
 
TEST-14 
Test in a distributed environment 
Test that the system worked in a distributed testbed at more than one site. 
Check such tests are carried out 
SV 
 
TEST-15 
Test in a distributed environment when some machines are switched off 
This should include tests where there are enough machines to provide the basic functionality, and 
ensure the system basically works, to ensure robustness. 
Check such tests are carried out.  
SV 
 
TEST-16 
Test with some machines incorrectly configured 
Check that such machines are handled appropriately (probably ignored) and the do not prevent the rest 
of the system from working.  It is especially important, that 1 hacked or bad machine should not cause 
the rest to fail. This should include having machines with e.g. the firewall incorrectly set, as well as 
sites setup maliciously.  If it is possible to add a site and configure it incorrectly and cause the whole 
deployment to fail or loose efficiency this is a vulnerability. 
Check such tests are carried out. 
SV 
 
 
 

3.21. OTHER MIDDLEWARE CHECKS 

PUBLIC  37 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
OTH-01 
Check if other programs are invoked, and if so if they are trustworthy. 
Ref - [8] 
SV 
 
OTH-02  
Check usage of setuid 
Ref – [8] suggests avoiding setuid. This is probably not possible 
Flag if it is used, and check carefully how it is used.  E.g. check against recipe in Ref – [9] 
SV 
 
OTH-03  
Check usage of shell or command line 
Ref – [8] suggests avoiding shell and command line. 
Flag if used, and check carefully how it is used. 
SV 
 
OTH-04 
Don’t confuse Random with pseudo-random 
Ref – [8] 
If random numbers are used, check how they are generated and check that they really are random, and 
that values are not predictable. 
SV 
 

3.22. DOCUMENTATION 
 
DOC-01 
Clearly document the Grid Security model 
It is important that the Grid Security model is clearly documented, so that it can be well understood by 
users and system administrators.  
Check a suitable document is available 
VRR 
 
DOC-02 
Ensure the Installation guide or instructions are clear and correct 
If the installation guide is clear and correct, especially concerning the security configuration it is less 
likely that there will be mis-configured or insecure installation. 

PUBLIC  38 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

For example, ensure you document what must be changed, what may be changed, and what should not 
normally be changed. 
Check such instructions are clear. 
VRR 
 
DOC-03 
Check that clear guidelines are available for care of credentials 
For users and administrators, it is important that they take care of their credentials, and do not leave 
copies available for public access. 
Check such guidelines are clear. 
VRR 

PUBLIC  39 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

4. DEPLOYMENT AND CONFIGURATION CHECKLIST 
In order to deploy the software securely, it might be necessary to go back and ensure the software 
allows secure deployment.  Here we list some checks that help us deploy in a secure way. 

4.1. SOFTWARE VERSIONS 
No matter how vulnerability free the software that is planned to be installed is, if the wrong version is 
installed or the software is maliciously substituted with another version then the care that has been 
taken is negated. 
 
VER-01 
Distribute software from a central source 
This allows one team of people to check that the correct version of software is available, including 
dependencies so that there is less chance of a site installing the wrong software. 
Check the method of distribution. 
VRR 
 
VER-02 
Apply all critical patches 
Ensure a system is in place to quickly apply any security patches quickly. 
SV 
 
VER-03 
Include mechanism for proving software is valid 
There should be some anti-tampering in place. This could be some sort of software signing or some 
sort of mechanism that allows a client to detect that the service contains the wrong software. 
This should be investigated in the future. 
SV 
 
VER-04 
Use a tool for checking versions 
It is important to ensure that old versions of software that contain vulnerabilities that have not been 
fixed are not left on various systems on the grid. This applies both to grid middleware and other 
software on the Grid.  A tool should be used to check the software versions on the grid. 
SV 
  

4.2. DEPLOYMENT METHODS 
 
DM-01 
Automate when possible 

PUBLIC  40 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Automate the installation and configuration where appropriate. It is inevitable that the installer will 
need to setup some things which define the configuration of that particular site or resource, as well as 
passwords. 
Check this is done 
VRR 
 
DM-02 
Include good configuration scripts 
Ensure these allow the installer to easily setup the software in a secure way. 
For all configuration it is best to document the following:- 
What must be changed  
What may be changed 
What should not normally be changed. 
Check this is done clearly 
VRR 
 
DM-03 
Deploy and configure with appropriate privileges 
Ensure that the principle of least privilege is adhered to in the deployment.  
Check this. 
VIR 
 

4.3. DEPLOYMENT AUTHENTICATION AND AUTHORIZATION 
 
DAA-01 
Ensure in all cases non - authenticated connections are disabled. 
This means that any principal must have a certificate from an acceptable CA in order to be able to 
successfully connect. 
Check no unauthenticated connections are allowed. If they are, assess the risk. 
SV 
 
DAA-02 
Ensure in all cases non-authorized actions are disabled 
This means that all actions, any principal must have acceptable credentials from a VO in order to carry 
out an action 
Check appropriate authorization is in place for all actions.  If no authorization is required, assess the 
risk 
SV 
 

PUBLIC  41 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

DAA-03 
Ensure authorization is enabled in order to run a job 
For job execution, authorization should always be enabled. 
Check this is the case 
SV 
 
DAA-04 
Carefully assess authorization to carry out potentially damaging actions 
Some actions can cause a lot of problems for others, such as the deletion of all files in a database. 
Carefully check who is authorized to carry out such actions, and that the system is correctly 
configured. 
SV 
 

4.4. FIREWALLS 
FIR-01 
Use firewalls 
Check that a firewall is in place 
VRR 
 
FIR-02 
Control over firewalls 
Check that the system administrator has control over which ports are open.  
VRR 
 
FIR-03 
Ensure firewall is correctly configured  
Check ports needed for that S/W are open, but there isn’t a blanket opening of firewalls. This means 
that appropriate specification and configuration files must be in place. 
VRR 
 
FIR-04 
Ensure software is configured appropriately to restrict onward connectivity 
It is important that Grid resources cannot be used to e.g. launch a SPAM attack. 
Check that appropriate software is in use and configured appropriately 
SV 
 
FIR-05 
Handle incorrectly configured firewalls 

PUBLIC  42 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

It is important that if the firewall at one site or to one resource is configured incorrectly, it does not 
cause the whole system to fail.  The situation where certain connections cannot be made should be 
seen as an error condition and handled gracefully. 
Check the handling of badly configured firewalls. 
SV 
 

4.5. USE OF CREDENTIALS 
The CA and VO system for issuing credentials is checked by others, so we assume all appropriate 
checks are made concerning the issue of credentials. Here we just consider their handling in the Grid 
system. 
 
Produce a Secure Credential Storage Procedures guide. (e.g. JRA3 guide –TBW) 
Here are a few obvious checks. 
 
CRD-01 
Password protect all private keys 
Check that all private keys are password protected. 
SV 
 
CRD-02 
Private keys should not be shared 
It is important not to share private keys, and this includes host keys. 
Check this 
SV 
 
CRD-03 
Ensure all passwords are passed in encrypted form 
Check this 
SV 
 
CRD-04 
Don’t echo passwords or display on users screen 
Check this 
SV 
 
CRD-05 
Don’t distribute passwords by E-mail 
If possible, distribute them person to person. 
SV 

PUBLIC  43 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
CRD-06 
Secure management of encryption keys 
Some data is stored in encrypted form. 
Check strategy for management of encryption keys 
SV 
 
CRD-07 
Avoid sharing user names and passwords. 
Do not use commonly known user names and passwords, even though this may ease deployment. 
Check this  
SV 
 
CRD-08 
Avoid sharing grid credentials. 
Do not share grid credentials between users, or between different services, or between users and 
services. 
Check this  
SV 
 
 
CRD-09 
Don’t authenticate on un-trusted criteria 
Don’t authenticate on anything that isn’t intended to serve that purpose, such as IP numbers, MAC 
addresses, or E-mail addresses. 
Check there is no such authentication 
SV 
 
CRD-10 
Ensure the end user is traceable 
Make sure that the user who submitted a job is traceable. 
Check this is done 
ADL 
 
CRD-11 
Don’t deploy services that break the rules. 
For example, don’t deploy a service that allows a user to use the services credentials for authentication 
or authorization with other services. 
Check this is not done 

PUBLIC  44 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

VRR 
 
CRD-12 
Protect Proxies 
A proxy hijack could be a serious problem, as it could appear that a user has done something they have 
not. Ensure the environment they are stored in is as secure as possible. 
SV 
 
CRD-13 
Ensure Authority security files are obtained by a trusted method 
Check the mechanism for obtaining e.g. CA certificates and VO certificates are adequate. 
SV 
 
CRD-14 
Ensure test security files are not present in the deployment 
E.g. test CAs and VOs are sometimes used for testing the software, which are just downloaded files 
which prove nothing about the user or site. 
Ensure such files not present in the deployment. 
SV 
 

4.6. HANDLING CONFIDENTIAL DATA 
 
CD-01 
Ensure Confidential data is stored on an Authorized resource 
Check that procedures are in place to avoid accidentally copying data to a non-trusted principal. 
SV 
 
CD-02 
Ensure Confidential data is stored in encrypted form. 
Check this 
SV 
 
CD-03 
Don’t store confidential data without password protection 
Don’t store sensitive information in a database that does not have password protection, even if it is 
encrypted and in a secure area with limited access. 
Check this 
SV 

PUBLIC  45 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

 
CD-04 
Ensure Authorized access is deployed 
Don’t distribute Confidential data in unencrypted form 
E.g. don’t send it by e-mail 
SV 
 
See also the logging section. 
 
 

4.7. LOGGING STRATEGY 
 
There is inevitably a trade-off between logging everything possible to ensure the maximum 
information is available to detect any misuse, and not setting up a system that allows a denial of 
service attack to be carried out by overloading the logging system and filling up disks.  
 
LS-01 
Enable logging all security ‘state’ transitions 
Log security state transitions: connected, authenticated, authorized (if appropriate coarse grained 
authorization is carried out) and disconnected. 
Check that mechanisms are in place to log these. 
ADL 
 
LS-02 
Log access to sensitive information 
It is important to setup the system to log access to sensitive information, even if this access is 
authorized.  
Check appropriate logging is enabled. 
ADL 
 
LS-03 
Log access to any resource.  
Check appropriate logging is enabled 
ADL 
 
LS-04 
Ensure end user is logged 
Ensure that on any resource the user who submitted the job is logged. 
Check this 

PUBLIC  46 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

ADL 
 
LS-05 
Have a log checking system 
Have a procedure for checking the logs on a regular basis. 
Check this is in place 
ADL 
 
LS-06 
Check level of logging against resources available 
If too much logging is enabled, it would be possible to significantly slow down the system or fill up 
the disk space.   
Ensure that the level has been checked and is realistic. 
SV 
 

4.8. STAFF 
 
Care needs to be taken over what roles or combination of roles principals may have. 
Should this be here? Or is it too far into deployment? 
 
STF-01 
Consider who has privileged roles  
Take care that you are confident of the people you issue with privileged roles. It may be a better 
strategy to give the more privileged roles to employees who have either been vetted for security or 
who have been with you for a long time than to give privileged roles to short term temporary staff. 
VRR 
 
STF-02 
Consider the combination of roles 
Combination of a rogue VO admin and CA admin could grant huge rights to a fictional user!  Also, if 
the same person is in charge of detecting abnormal usage and administrating a VO or CA then 
abnormal usage could be overlooked. 
VRR 
 
STF-03 
Ensure that staff receive sufficient training 
If staff are not trained properly,  especially sysadmins, they are more likely to configure a system in a 
way that is vulnerable than if they receive sufficient training and thoroughly understand what they are 
doing.   This includes allowing staff time for training, including for example one of the sources of 
training is reading a document they need time to do that. 

PUBLIC  47 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Check training plan is in place 
VRR 
 

4.9. INCIDENT RESPONSE AND DETECTION 
 
IR-01 
Have an incident response strategy at the time of deployment 
See for e.g. Ref – [11] 
ADL 
 
IR-02 
Develop a strategy for detecting abnormal usage 
This is in order to detect anything that goes wrong as early as possible. 
This may be in the form of monitoring normal usage, and investigating usual usage. 
ADL 
 

4.10. ISSUEING OF CREDENTIALS 
This applies to any authority that issues credentials, whether they be a Certification Authority (CA), a 
Virtual Organisation (VO),  or some other type of authority.  Procedures are well established in the 
case of Certification Authorities [R6], but less so in the case of Virtual Organisations.  We do not 
reproduce details conditions here but simply add a reminder that adequate procedures must be in place. 
 
IOC-01  
Have a minimum set of requirements on any authority issuing credentials 
It is important that any authority that issues credentials is trustworthy.  
SV 
 
IOC-02  
Each authority must have a procedure for issuing credentials 
It is important that any authority checks the identity of a principal to which credentials are issued, and 
ascertains whether that principal is entitled to those credentials. This needs to be written down as an 
agreed procedure. 
SV 

PUBLIC  48 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

5. SPECIFIC KNOWN VULNERABILITY LOGGING 
As people become aware of vulnerability in the software or deployment it is important to log it in a 
manner that allows it to be addressed, eventually eliminated and allow us to learn from this to prevent 
a re-occurrence.  It is also important to log it in such a way that it is not readable by any unfriendly 
principal. 

5.1. WHAT TO LOG  
The following is a list of what should be logged.  

5.1.1. Title 
A few words to say what the vulnerability is. 

5.1.2. Date 
The current date. 

5.1.3. Location 
The location of the problem. This may be which site or group of sites, or which deployment. 

5.1.4. Software  
Which software version is installed, and what particular packages are relevant.   

5.1.5. Vulnerability 
Description of the problem, including what can be done that may cause a problem. 

5.1.6. Exploit Flag 
Note if the vulnerability has already been exploited 
 

5.1.7. Proposed action – immediate 
This may be to turn a system off.  Or it may be, for example, an immediate change in the 
configuration. It may be to do nothing until a fix is available. This should be a result of the risk 
analysis. 
This will probably include a brief risk analysis. 

5.1.8. Exploitation 
Who can potentially exploit the vulnerability. This may include whether it can be exploited by e.g. 
someone who has:- 
No credentials I.e. someone who does not have a certificate from an appropriate CA. 
Authenticated. Someone who has a certificate from an appropriate CA, but who has no other 
credentials such as VO membership. 
Authorized This may include when a user can act beyond their intended rights, for example may be 
able to examine information within a VO that they should not. It may also mean that an authorized 
user (possibly by mistake) can request too many facilities, and cause the grid to fail.  
 

PUBLIC  49 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

5.1.9. Analysis 
Where the problem lies, and it’s cause. 
 Is it a configuration problem on a limited number of sites? A problem with configuration scripts, 
middleware package, or a combination of the effects of more than one piece of software and/or 
installation.  

5.1.10. Proposed solution – short term 
This is on a time scale of days or weeks, rather than immediate action. The exact timescale is TBD1.  
It may be to change the configuration. It may be a software change. It could also be a proposal for 
informing the user community not to attempt to carry out a specific action, in the case where it is 
difficult to quickly prevent an authorized user doing something by mistake. It may be increased 
logging, so that the specific problem can be tracked.   

5.1.11. Proposed solution – long term 
What should be done to properly address this vulnerability. It may be that new software is needed, or 
one or more middleware packages need modification, or a change in the way grids are deployed. 

5.1.12. Detailed Risk analysis  
If a solution cannot be found quickly, a detailed risk analysis should be carried out. 
A description of the risks associated with the vulnerability, including who it may impact. 
This should include whether the impact is  
External. If the grid could be used to attack other systems, such as  
Grid Itself. This could be a denial of service attack. 
User. This could be when the user could be accused of something they haven’t done, or do something 
damaging they did not intend having an impact on their reputation.  
This should be written or at least approved by appropriate security experts. 
This should include a recommendation of whether the software should continue to be deployed until it 
is fixed. 
 

5.1.13. Checklist reference 
Items in the checklists which would have picked up the vulnerability if the checklists had been applied 

5.1.14. Checklist proposal 
Any proposal for checks to add to the checklists to prevent similar vulnerabilities in future. 

5.1.15. Further info and decisions 
This can be as large as necessary – any appropriate comments/decisions etc. 

5.2. WHEN TO RECORD WHAT 
Access to logs of specific vulnerability needs to be carefully controlled, as we do not want to give the 
whole world access to everything immediately. 
When someone discovers a vulnerability they should record the Title, Date, Location, Software, 
Vulnerability and indicate whether or not the vulnerability has been exploited. 

PUBLIC  50 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

If the vulnerability has been exploited it should immediately be escalated to incident response. 
Quickly the vulnerability group will decide what action to take immediately, and who could exploit 
the vulnerability.  
The vulnerability group will propose a solution in the short term, after consultation with appropriate 
deployment and/or developers.   
If a complete solution is not available in the short term, a detailed risk analysis is carried out. The 
various security groups are consulted and a decision is made as to whether the software should 
continue to be deployed. Then a recommendation is made.   

5.3. MEMBERS OF THE VULNERABILITY GROUP 
A vulnerability core group is found to manage the vulnerability group. This will consist of 4-6 
members.   
The vulnerability core group will do the following:- 

• Manage membership of the vulnerability group 
• Ensure vulnerability information is passed on to appropriate people, whether they be 

developers or deployment people. 
• Ensure vulnerabilities are dealt with in a timely manner 
• Ensure any vulnerability that has been exploited is escalated to incident response  

Vulnerability group members will 
• Be members of a recognised grid project 
• Are known first or second hand to a member of the vulnerability core group 
• Agree not to pass information outside the group 
• Have read and write access to vulnerability information (database and mailing list) 

We expect the following to be involved 
• People involved in Security Policy 
• Deployment people 
• Loose cannons 
• Developers (e.g. 1 per activity) 

 

5.4. PASSING INFORMATION OUTSIDE THE GROUP 
When to pass information outside the group is a difficult issue. The model used by some commonly 
used software whereby information is made public after a short time is not appropriate, as grid 
software is not sufficiently well developed and if this attitude was taken no grids would be deployed. 
We propose a compromise where 
Initially, the information is private. 
After a TBD1 time, either a full solution should be available, or a full risk analysis including a 
recommendation as to whether the software should remain deployed should be available.   
If a solution is not available in TBD1 time, the information should be distributed to Regional 
Operational Centres (ROCs) and other appropriate deployment people along with the risk analysis.  

PUBLIC  51 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

If a solution is available in TBD1 time, then the information is made available to the same people as 
above.  It can be made public after a further TBD2 time to allow the solution to be deployed. 
 

5.5. MANAGEMENT AGREEMENT 
Agreement from the management of various grid projects should be obtained on how we approach 
vulnerability handling before we continue. 
 
 
 

PUBLIC  52 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

6. VULNERABILITY ‘USE CASES’ 
It is worth while considering how one would go about an attack on the system, to achieve various 
aims, and look at how the system prevents the attacker achieving their aims. This could be considered 
to be an ‘Anti use case’ 

6.1. USE CASE CHECKING 
For each use case, in various roles it is worth considering the following:-- 

6.1.1. How would you achieve it? 
This is where you think about what you would do to go about achieving a use case.  It is also worth 
considering each type of principal, whether a user without credentials? An Authenticated user? An 
authorized user? A system administrator?  For each use case, you will then ask the following. 

6.1.2. What Specific Mechanism(s) prevent this? 
You look at the security mechanisms that prevent it. 

6.1.3. Try it - possibly 
Try it out on a testbed, but make sure you have written permission to try it out first. This is most 
important. 

6.1.4. Is the attempt successful? 
Is it possible to achieve it? 

6.1.5. Is the attempt logged? 
Does appropriate logging occur? If the attempt was successful, does it show up in the log? 

6.1.6. Is the attempt detected? 
How is an attempt detected? Does the routine analysis of the log pick up appropriate activity? 

6.1.7. How is the attempt handled? 
What would automatically be done to if this happened, particularly if it was successful? 
 

6.2. USE CASE EXAMPLES 
Here we describe a few ‘use case’ type scenarios that the vulnerability prevention and assessment 
should guard against.   They can be considered to be ‘anti use cases’, things that must not be allowed.  
Here are some ant use case examples, which could be considered. 

6.2.1. Storage of illegal material for distribution 
This is where the Grid storage facilities are used to store material for illegal distribution. This may be 
e.g. pornographic material, or it may be copyright material.  

6.2.2. Certificate Cracking 
A person may wish to crack a banks certificate, and use it to steal money.   

6.2.3. Credentials theft 

PUBLIC  53 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

A person may steal another persons’ authentication and authorization credentials to carry out actions 
in another principal’s name. 

6.2.4. Launch of a denial of service attack on the Grid 
This is where a person prevents usage of the grid for instance by overloading it, or by causing it to fail 
in some way.  This could be done intentionally by someone with malicious intent, or by mistake by an 
authorized user if the system contains appropriate weaknesses which cause it to fail in certain 
circumstances.   

6.2.5. Launch of a denial of service attack from the Grid 
This is where a person uses the grid to launch a denial of service attack on another system.    

6.2.6. Theft of confidential information 
This is where someone steals information, it may confidential because it contains personal data, or it 
may be confidential because it required a large amount of expenditure to obtain and is owned by a 
company. 

6.2.7. Destruction of valuable data  
This is where valuable data becomes deleted, whether accidentally or intentionally. 

6.2.8. Addition of an un-trusted host 
This is where someone attempts to add a host to the grid, which may be used in another form of attack.  

6.3. DISCUSSION 
It is important to consider in what role such use cases may be achieved, and how they are handled. For 
example, it may be relatively easy for a system administrator to abuse the system, so the emphasis 
should be on carefully considering who you give the role of system administrator to, and then on 
detection and deterrence. For a principal without any credentials the emphasis should be on protection. 
An attempt to carry out one use case, may be by invoking another. For example, if someone without 
credentials wanted to store illegal information on a storage element, they may decide to try and steal 
the credentials of another user who has access to that storage element.  For someone with credentials, 
it is necessary to ensure that they cannot use the storage element in that way without detection.  For 
authorized users and system administrators the main means of prevention is probably detection and 
withdrawal of credentials.  

PUBLIC  54 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

7. CHECKLIST TABLES 
For each piece of middleware, the idea is to check each point. 
Rel, is an indication if this is relevant to that piece of middleware, if it is not there is no point in 
checking. 
Checked is the flag on whether such a check has been carried out. 
Result is the result of the check, it might be that the S/W is O.K. 
Ref is a reference to where to find more information. It may be in the form of a brief assessment of the 
risk of continuing with the vulnerability in place, or a plan of what to do about it if action is 
considered necessary.   
In the case of the deployment checklist, if a problem is found it may be necessary to modify the 
software, which may generate a new check to add to the middleware checklist if an appropriate check 
isn’t present.  
Comment is a few words if appropriate. 
 

7.1. MIDDLEWARE CHECKLIST 
 
 

Vul No Vul type Rel Checked  Result Ref Comment 

       
DES-01 VRR      
DES-02 VIR      
DES-03 VIR      
DES-04 SV      
DES-05 SV      
DES-06 VRR      
DES-07 SV      
       
CP-01 VRR      
CP-02 VRR      
CP-03 VRR      
CP-04 VRR      
       
COM-01 VRR      
COM-02 VRR      
COM-03 SV/ADL      
COM-04 SV      
COM-05 SV      

PUBLIC  55 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

COM-06 SV      
COM-07 SV      
COM-08 SV      
       
INP-01 VRR      
INP-02 VRR      
INP-03 VRR      
INP-04 VRR      
INP-05 SV      
INP-06 VRR      
INP-07 VRR      
INP-08 VRR      
INP-09 SV      
       
BUF-01 SV      
BUF-02 SV      
       
UCB-01 SV      
UCB-02 SV      
UCB-03 SV      
UCB-04 SV      
UCB-05 SV      
UCB-06 SV      
UCB-07 SV      
UCB-08 SV      
UCB-09 SV      
UCB-10 SV      
UCB-11 SV      
       
CON-01 SV      
CON-02 SV      
CON-03 SV      
CON-04 SV      
       
BCK-01 SV      

PUBLIC  56 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

BCK-02 SV      
       
MAS-01 SV      
MAS-02 SV      
MAS-03  SV      
MAS-04 SV      
       
EXP-01 SV      
EXP-02 SV      
       
FIH-01 SV      
FIH-02 SV      
FIH-03 SV      
FIH-04 SV/VRR      
FIH-05 SV      
FIH-06 SV      
FIH-07 SV      
FIH-08 SV      
FIH-09 SV      
FIH-10 SV      
       
AUZ-01 SV      
AUZ-02 SV      
AUZ-03 VRR      
AUZ-04 VRR      
AUZ-05 SV      
AUZ-06 SV      
AUZ-07 SV      
AUZ-08 VRR      
AUZ-09 VRR      
       
USF-01 SV      
USF-02 SV      
USF-03 SV      
USF-04 ADL      

PUBLIC  57 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

       
DEP-01 VRR      
DEP-02 VRR      
DEP-03 VRR      
       
ERR-01 ADL      
ERR-02 ADL      
ERR-03 ADL/VR      
ERR-04 ADL      
ERR-05 VRR      
       
FA-01 VIR      
       
LOG-01 ADL      
LOG-02 ADL      
LOG-03 ADL      
LOG-04 ADL      
LOG-05 ADL      
LOG-06 ADL      
LOG-07 ADL      
       
SMW-01 SV/VRR      
SMW-02 SV/VRR      
       
ISM-01 SV      
       
TEST-01       
TEST-02       
TEST-03       
TEST-04       
TEST-05       
TEST-06       
TEST-07       
TEST-08       
TEST-09       

PUBLIC  58 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

TEST-10       
TEST-11       
TEST-12       
TEST-13       
TEST-14       
TEST-15       
TEST-16       
       
OTH-01 SV      
OTH-02 SV      
OTH-03 SV      
OTH-04 SV      
       
DOC-01 VRR      
DOC-02 VRR      
DOC-03 VRR      
       

7.2. DEPLOYMENT CHECKLIST 
Deployment checklist is less advanced. 
 

Vul No Vul type Rel Checked  Result Ref Comment 

       
VER-01 VRR      
VER-02 SV      
VER-03 SV      
VER-04 SV      
       
DM-01 VRR      
DM-02 SV      
DM-03  VIR      
       
DAA-01 SV      
DAA-02 SV      
DAA-03 SV      
DAA-04 SV      

PUBLIC  59 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

       
FIR-01 VRR      
FIR-02 VRR      
FIR-03 VRR      
FIR-04 SV      
FIR-05 SV      
       
CRD-01 SV      
CRD-02 SV      
CRD-03 SV      
CRD-04 SV      
CRD-05 SV      
CRD-06 SV      
CRD-07 SV      
CRD-08 SV      
CRD-09 SV      
CRD-10 ADL      
CRD-11 VRR      
CRD-12 SV      
CRD-13 SV      
CRD-14 SV      
       
CD-01 SV       
CD-02 SV      
CD-03 SV       
CD-04 SV      
       
LS-01 ADL      
LS-02 ADL      
LS-03 ADL      
LS-04 ADL      
LS-05 ADL      
LS-06 SV      
       
STF-01 VRR      

PUBLIC  60 / 61
 



 

GRID SECURITY 
VULNERABILITY 
Detection and Reduction 

Date: 18/04/2005 

 

 
  

Vul No Vul type Rel Checked  Result Ref Comment 

STF-02 VRR      
STF-03 VRR      
       
IR-01 ADL      
IR-02 ADL      
       
IOC-01 SV      
IOC-02 SV      
       

 
 
 
 

PUBLIC  61 / 61
 


	INTRODUCTION
	PURPOSE
	APPLICATION AREA
	REFERENCES
	DOCUMENT EVOLUTION PROCEDURE
	TERMINOLOGY

	SECURITY VULNERABILITY DESCRIPTION
	WHAT SHOULD WE BE PROTECTING?
	Protecting the system
	Protecting data and information
	Protecting other systems from our Grid system
	Protecting the user from the system
	Protecting those who deploy the grid

	WHAT ARE WE PROTECTING FROM?
	An Untrustworthy system
	An untrustworthy administrator
	An untrustworthy user
	An untrustworthy machine
	A hacker
	Untrustworthy software

	WAYS OF PROTECTING FROM VULNERABILITIES
	Middleware
	Security Components
	General Grid Middleware
	Integration of Security components with Grid Middleware
	Principle of least privilege
	Connections

	Configuration and Deployment
	Reliable configuration
	Level of logging


	GOOD PRACTICES
	Checking principals
	Care over combination of roles
	CA and VO procedures
	Management of Secrets

	MECHANISMS FOR PREVENTING OR DETECTING MISUSE
	Logging and processing of logs
	Usage tools
	Service version checking
	Incident Response

	VULNERABILITY DETECTION THROUGH USE OF CHECKLISTS
	Principle
	What does satisfying each check give us?

	DISCOVERY OR AWARENESS OF SPECIFIC VULNERABILITIES
	RELATION TO RISK ASSESSMENT

	MIDDLEWARE VULNERABILITY CHECKLIST
	DESIGN
	CODING PRACTICE
	COMMUNICATIONS
	INPUT CHECKING
	BUFFER OVERFLOWS
	UNWELCOME CODE BEHAVIOUR
	CONFIDENTIAL DATA
	BACKDOORS
	MIDDLEWARE ACCESS TO THE SYSTEM
	EXPOSING INFORMATION ABOUT THE SYSTEM
	FILE HANDLING
	AUTHORIZATION
	USAGE
	DEPENDENCIES
	ERROR HANDLING
	FAILURE
	LOGGING MECHANISMS
	SPECIFIC CHECKS ON SECURITY MIDDLEWARE
	INTEGRATION OF SECURITY MIDDLEWARE WITH OTHER MIDDLEWARE
	TESTING
	OTHER MIDDLEWARE CHECKS
	DOCUMENTATION

	DEPLOYMENT AND CONFIGURATION CHECKLIST
	SOFTWARE VERSIONS
	DEPLOYMENT METHODS
	DEPLOYMENT AUTHENTICATION AND AUTHORIZATION
	FIREWALLS
	USE OF CREDENTIALS
	HANDLING CONFIDENTIAL DATA
	LOGGING STRATEGY
	STAFF
	INCIDENT RESPONSE AND DETECTION
	ISSUEING OF CREDENTIALS

	SPECIFIC KNOWN VULNERABILITY LOGGING
	WHAT TO LOG
	Title
	Date
	Location
	Software
	Vulnerability
	Exploit Flag
	Proposed action – immediate
	Exploitation
	Analysis
	Proposed solution – short term
	Proposed solution – long term
	Detailed Risk analysis
	Checklist reference
	Checklist proposal
	Further info and decisions

	WHEN TO RECORD WHAT
	MEMBERS OF THE VULNERABILITY GROUP
	PASSING INFORMATION OUTSIDE THE GROUP
	MANAGEMENT AGREEMENT

	VULNERABILITY ‘USE CASES’
	USE CASE CHECKING
	How would you achieve it?
	What Specific Mechanism(s) prevent this?
	Try it - possibly
	Is the attempt successful?
	Is the attempt logged?
	Is the attempt detected?
	How is the attempt handled?

	USE CASE EXAMPLES
	Storage of illegal material for distribution
	Certificate Cracking
	Credentials theft
	Launch of a denial of service attack on the Grid
	Launch of a denial of service attack from the Grid
	Theft of confidential information
	Destruction of valuable data
	Addition of an un-trusted host

	DISCUSSION

	CHECKLIST TABLES
	MIDDLEWARE CHECKLIST
	DEPLOYMENT CHECKLIST


