Light and heavy elements nucleosynthesis in low mass AGB Stars

S. Cristallo

(Osservatorio di Teramo, INAF)

- O. Straniero, L. Piersanti (Osservatorio di Teramo, INAF)
- R. Gallino (Universita' di Torino)
- I. Dominguez (Univerdad de Granada)

OUTLINE

M=2M_o AGB models (FRANEC Code)

HALO STARS (*Z*=1x10⁻⁴)

- ➤ The formation of the ¹³C pocket and the nuclear network
- > Light and heavy elements nucleosynthesis
- Comparison with observations

s-process

$^{13}C(\alpha,n)^{16}O$ reaction

Weak component (A<90)

→ Main component (90<A<204)

Strong component (204<A<209)

How we treat the convection

- Schwarzschild criterion: to determine convective borders
- <u>Mixing length theory:</u> to calculate velocities inside the convective zones

At the inner border of the convective envelope, we assume that the velocity profile drops following an exponentially decaying law

REF: Freytag (1996), Herwig (1997), Chieffi (2001), Straniero(2005), Cristallo (2001,2004,2006)

$$v = v_{bce} \cdot exp (-d/\beta H_p)$$

- V_{bce} is the convective velocity at the inner border of the convective envelope (*CE*)
- d is the distance from the CE
- H_p is the scale pressure height
- $\beta = 0.1$

WARNING: v_{bce}=0 except during Dredge Up episodes

Gradients profiles WITH exponentially decaying velocity profile

During a TDU episode

Formation of the ¹³C-pocket

 $M=2M_{\odot}$ $Z=Z_{\odot}$

- a) Maximum envelope penetration (during TDU);
- b) 12 C(p, γ) 13 N(β +) 13 C and 13 C(p, γ) 14 N reactions;
- c) ${}^{22}\text{Ne}(p,\gamma)^{23}\text{Na};$
- d) the envelope receeds.

The resulting pocket(s)

¹³C-pocket

¹⁴N-pocket

²³Na-pocket

Variation of the ¹³C-pocket pulse by pulse

14N strong neutron poison via
 14N(n,p)¹⁴C reaction

Calibration of the free parameter

Different choices of the β parameter in the velocity profile algorithm

β~0.1

- 1. Low mass AGB Stars
- 2. Treatment of convection

Cristallo S. (PhD Thesis)

THE NETWORK

About 500 isotopes

linked by more than 700 reactions

Reactions	Reference
(n,γ) (n,p) and (n,α) p and α captures β decays	Bao & Kaeppeler Koehler,Wagemans NACRE Takahashi&Yokoi

Solar metallicity

THE AGB PHASE

CONVECTIVE ¹³C burning → ⁶⁰Fe production

t=0 at the

13C-pocket ingestion
in the convective shell

Cristallo et al. 2006 (astro-ph/0606374)

Comparison with post-process calculations

POST PROCESS

(Gallino et al. 1998)

 $M=2M_{\odot}$, $Z=2\times10^{-2}$ (Straniero et al. 2003)

¹³C pocket

- 1. Artificially introduced
- 2. Constant pulse after pulse

Final distributions

Comparison with Galactic Carbon Stars

 $Z \sim Z_{\odot}$ Surface C/O=1

- Abia et al. 2002
- **▲** FRANEC

(6th pulse with TDU)

Low metallicity

Pulse by pulse surface enrichments ($Z=10^{-4}$)

[C/Fe]=3.3 deX

[F/Fe]=3.7 deX

[Na/Fe]=2.8 deX

 $[ls/Fe] \sim 1.7$

 $[hs/Fe] \sim 2.3$

 $[Pb/hs] \sim 3.1$

Comparison with LEAD (Halo) stars

EXTRINSIC AGB \

McClure & Woodsworth 1990 ORBITAL PARAMETERS

Future plans

- Exploring effects induced by C/O surface variations in models at low metallicities
- Performing new models with a reduced mass-loss
- Calculating more massive AGB stars (Al production)
- 1. $M=3M_{\odot}$ and $Z=Z_{\odot}$ (already done)
- 2. Currently running $M=6M_{\odot}$ and $Z=Z_{\odot}$

Yields and pulse by pulse [El/Fe] soon available on-line at:

http://www.oa-teramo.inaf.it/osservatorio/personale/cristallo/data_online.html