Direct measurement of the 18F(p,α)15O reaction for application to nova γ-ray emission

Nicolas de Séréville
Centre de Recherches du Cyclotron, Louvain-la-Neuve, Belgium
Nucleosynthesis of 18F ($T_{1/2} = 110$ min)

- γ-ray emission at 511 keV: annihilation of the $\beta^+ \text{ with the expanding envelope}$
- Seed nucleus: 16O \rightarrow CO and ONe novae
- Hydrodynamical calculations \rightarrow SHIVA code
 \text{José & Hernanz (1998)}
- Main nuclear uncertainty: 18F(p,α)15O
- Large uncertainty on γ-ray flux

Other nuclear uncertainties: 17O(p,γ)18F and 17O(p,α)14N

\text{TUNL + Orsay (CSNSM)}
$^{18}\text{F}(p,\alpha)^{15}\text{O}$ current status

de Séréville et al. 2003
Kozub et al. 2005
Coszach et al. 1995
Rehm et al. 1995
Graulich et al. 2001
Bardayan et al. 2002

direct

(d,p)

Indirect

Mirror nuclei

$(p,p) + (p,\alpha)$

Uncertainties
- Total widths
- Missing levels
- Interferences
Interferences effect / experimental method

- Interference effect in the Gamow peak
- low intensity 18F beam and cross section → difficult to measure below 300 keV
- Direct measurement at higher energies → 4 energies
- R-matrix analysis

\[S(E) \ [\text{keV} \cdot \text{b}] \]

\[E_{\text{c.m.}} \ [\text{MeV}] \]
Experimental set-up: \(p(^{18}\text{F}, \alpha)^{15}\text{O} \)

Set-up:

- **\(^{18}\text{F}\) and \(\alpha \) source
- **CH\(_2\)** target
- **Al** degraders

Detector positions:
- **LEDA 1:** solid angle
- **LEDA 2:** coincidence efficiency (30%)

LEDA detectors:
- (Louvain LN + Edinburg)
- Davinson et al. NIM A 2000
- silicon multistrip detectors (300 \(\mu \)m)
- sector with 16 annular strips
- energy resolution (\(\approx \) 30 keV FWHM)

Target: \(\text{CH}_2 \approx 70 \mu\text{g/cm}^2 \)
- covered c.m. energy range / counting rate

Degraders: Al (95, 500, 670 \(\mu\text{g/cm}^2 \))
- \(E_{c.m.} = 665, 485, 400 \text{ keV} \)
Production of 18F ($T_{1/2} = 110$ min):

- 18O(p,n)18F \(E_p @ 15 \text{ MeV} \)
- chemical extraction (45 min) -> CH$_3$18F
- 1 bunch of 18F / 2h (0.5 to 1Ci!)
- 17 bunches of 18F over 1 ½ week

(Cogneau et al. NIM A 1999)

Acceleration:

- $E^{^{18}}$F = 13.8 MeV (nominal)
- $I \approx 10^6$ pps
- rejection of 18O contamination

Characterization:

- PIPS detector at 0°
- energy after each degrader
- 18O / 18F < 0.5%
$^{18}\text{F} + \text{p}: \alpha - ^{15}\text{O}$ coincidences ON resonance

Coincidences LEDA1 x LEDA2

→ clear identification of $^{18}\text{F}(\text{p},\alpha)^{15}\text{O}$ events

$E_{\text{cm}} = 665 \text{ keV} \rightarrow 4150 \text{ events}$

$E_{\text{cm}} = 700 \text{ keV} \rightarrow 1450 \text{ events}$
$^{18}\text{F} + p$: $\alpha - ^{15}\text{O}$ coincidences OFF resonance

Coincidences LEDA1 x LEDA2

\rightarrow very clean selection of events

$E_{cm} = 485$ keV \rightarrow 180 events

$E_{cm} = 400$ keV \rightarrow 35 events
Differential cross-section

Normalization

→ Elastic scattering 18F + 12C in LEDA2 + CH$_2$ stoechiometry

→ good agreement with $l = 0$

ON resonance 3/2+)

→ checked OFF resonance

E$_{c.m.}$ = 700 keV
Absolute cross-section

Good agreement with the $E_r = 665$ keV resonance parameters
Good agreement with previous experimental data
Interferences between $3/2^+$ states in 19Ne [1]

- Four $3/2^+$ resonances: $E_r = 8, 38, 665, 827$ keV

- $E_r = 827$ keV small α-width ($\Gamma_\alpha = 0.35$ keV) → no effect in Gamow peak region
Interferences between $3/2^+$ states in ^{19}Ne [2]

- $E_r = 8$ or 38 keV which level is contributing and how?
 → mainly one of the two: $^{18}\text{F}(d,p)^{19}\text{F}$

Two cases

![Graphs showing S-factor vs. c.m. energy for different E_r values]
Conclusion

Present experiment: $^{18}\text{F}(p,\alpha)^{15}\text{O}$ direct measurement at low energy

Constraints on interference sign for $3/2^+$ levels:

→ complex situation depending on spectroscopic properties of low lying levels (Γ_p, Γ_α)
→ All cases: (+ - -) favored
 (+ - +) rejected
→ Dominant $E_\gamma = 38\text{ keV}$: (+ + +) Favored (constructive)
 (+ - -) Rejected (destructive)
 (+ - +)
 (+ + -)

Also $1/2^+$ levels: see P. Descouvemont’s talk

Near perspectives (accepted experiments):
→ Determine properties of low lying resonances
→ Measurements at lower energies (direct or THM)
Collaboration

N de Séréville, C. Angulo, P. Leleux
(CRC / UCL, Louvain-la-Neuve, Belgium)

A. Coc, J. Kiener, A. Lefebvre, V. Tatischeff
(CSNSM, Orsay, France)

F. Hammache
(IPN, Orsay, France)

T. Davinson, D. Robertson
(Univ. of Edinburgh, UK)

A. Laird, S. Fox, P. Mumby-Croft, K. Vaughan
(Univ. of York, UK)

L. Achouri, N. Orr
(LPC, Caen, France)

P. Figuera
(INFN, Catania, Italy)

P. Descouvemont
(PNTPM, ULB, Belgium)

D. Labar
(MIER, UCL, Belgium)

E. Casajeros
(Univ. de Santiago de Compostela, Spain)