Building Nuclei From the Ground Up

Gaute Hagen1

Collaborators: D. Dean, M. Hjorth-Jensen, T. Papenbrock

1Oak Ridge National Laboratory, Physics Division, E-mail: hageng@ornl.gov

Nuclei in the Cosmos - IX, June 26 2006
1 Overall Motivation and Aims

2 From realistic to effective interactions

3 Coupled Cluster Theory and Results

4 CCSD at the dripline

5 Conclusion
1. Overall Motivation and Aims
2. From realistic to effective interactions
3. Coupled Cluster Theory and Results
4. CCSD at the dripline
5. Conclusion
Outline

1. Overall Motivation and Aims
2. From realistic to effective interactions
3. Coupled Cluster Theory and Results
4. CCSD at the dripline
5. Conclusion
Outline

1. Overall Motivation and Aims
2. From realistic to effective interactions
3. Coupled Cluster Theory and Results
4. CCSD at the dripline
5. Conclusion
Outline

1. Overall Motivation and Aims
2. From realistic to effective interactions
3. Coupled Cluster Theory and Results
4. CCSD at the dripline
5. Conclusion
Aims in Nuclear Structure

Wish to solve to A-body nuclear Hamiltonian

\[H = T - T_{CoM} + V = \left(1 - \frac{1}{A}\right) \sum_{i=1}^{A} \frac{k_i^2}{2m} + \sum_{i<j}^{A} \left(V(i,j) - \frac{k_i \cdot k_j}{mA}\right). \]
From realistic to effective interactions: $V_{\text{low}-k}$

The free N-N interaction generates strongly repulsive and/or diverging matrix elements at short internucleonic distances. Need a **Renormalized Interaction**!

Different high-precision potentials

Universal low-momentum potential

Low-momentum nucleon-nucleon interaction.

\(V_{\text{low-}k} \) may be constructed by either Renormalization Group Theories (where high momentum modes are integrated out) or Similarity Transformation techniques.

\[
P = \{ |\vec{k}_p\rangle, \ |k| \leq \Lambda \}, \quad Q = \{ |\vec{k}_q\rangle, \ \Lambda < |k| < \infty \}.
\]

\[
\tilde{H} = X^{-1}HX, \quad |\Phi_k\rangle = X^{-1}|\Psi_k\rangle.
\]

\[
\begin{pmatrix}
P\tilde{H}P & P\tilde{H}Q \\
Q\tilde{H}P & Q\tilde{H}Q
\end{pmatrix}
\begin{pmatrix}
P\Phi_k \\
Q\Phi_k
\end{pmatrix}
= E_k
\begin{pmatrix}
P\Phi_k \\
Q\Phi_k
\end{pmatrix},
\]

Decoupling equation \(Q\tilde{H}P = Q(X^{-1}HX)P = 0 \), Lee-Suzuki gives \(X = \exp(\omega) = 1 + \omega \) where the wave operator \(\omega \) satisfies the decoupling condition

\[
\omega = Q\omega P.
\]

The Lee-Suzuki effective interaction in the \(P \)-space is then derived

\[
P V_{\text{LS}} P = PH(P + \omega) - PH_0 P = PVP + PV\omega = PVP + PVQ\omega.
\]
$V_{\text{low}-k}$: Pros and Cons

1. Energy and nucleus independent interaction.
2. Soft core, suitable for Many-Body perturbation calculations.
3. Means to probe importance of missing Many-Body forces.
4. Generates a cutoff (λ) dependence, which can only be removed by including corresponding Many-Body forces.

Question: Is 3-N force sufficient to remove λ dependence and if so can the 3-N force be treated perturbatively?
Answer: Coupled Cluster approach to medium mass nuclei

1. Coupled Cluster Theory is fully microscopic.
2. Coupled Cluster is size consistent. The energy of two non-interacting fragments computed separately is the same as that computed for both fragments simultaneously.
3. Low computational cost (CCSD scales as $n_o^2 n_u^4$).
4. Capable of systematic improvements.
5. Amenable to parallel computing.

Computational Chemistry: 100’s of publications in any year (Science Citation Index) for applications and developments.
Motivation

- Renormalized Interactions
- CCSD
- CCSD at the dripline

Conclusion

- **Coupled Cluster Expansion**

Coupled-Cluster: An “Exponential Ansatz” for the wave function

\[
\Psi_{CC} = \exp(T) \Phi_0 = \exp(T_1 + T_2 + T_3 + ...) \Phi_0
\]

Truncation of the Coupled Cluster operator \(T \) leads to:

- \(T = T_1 + T_2 \rightarrow \text{CCSD} \)
- \(T = T_1 + T_2 + T_3 \rightarrow \text{CCSDT} \)

\[
T_1 = \sum_{ia} t_i^a a_i a_i^\dagger, \quad T_2 = \sum_{ijab} t_{ij}^{ab} a_i a_i^\dagger a_j a_j^\dagger
\]

CCSD energy equation

\[
E = \langle \Phi_0 | H(1 + T + \frac{T^2}{2!} + \frac{T^3}{3!} + ...) | \Phi_0 \rangle
\]

\[
= \langle \Phi_0 | H | \Phi_0 \rangle + \langle \Phi_0 | HT | \Phi_0 \rangle + \langle \Phi_0 H | \frac{T^2}{2!} | \Phi_0 \rangle.
\]

The single \(t_i^a \) and double excitation amplitudes \(t_{ij}^{ab} \) may be determined from

\[
0 = \langle \Phi_i^a | H | \Phi_0 \rangle, \quad 0 = \langle \Phi_{ij}^{ab} | H | \Phi_0 \rangle;
\]
Coupled Cluster Results for ^{16}O

$V_{\text{lowk}}^{16}\text{O}$ results using N3LO and CD-Bonn

E_{CCSD} (MeV) vs $h\omega$ (MeV)

N3LO
-143.5 +/- 0.4 MeV

CD-Bonn
-153.4 +/- 0.4 MeV
Coupled Cluster Results for 16O with three-body force

$V_2: V_{\text{low} - k}$ with cutoff $\lambda = 1.9 \text{ fm}^{-1}$ generated from the Argonne V18 N-N interaction model

- (1): V_2 only
- (2): (1) + V_3 normal ordered contribution to vacuum energy
- (3): (1) + (2) + V_3 normal ordered contribution to CCSD energy
- (4): (1) + (2) + (3) + V_3 normal ordered contribution to one-body operator
- (5): (1) + (2) + (3) + (4) + V_3 normal ordered contribution to two-body operator
- (6): (1) + (2) + (3) + (4) + (5) + t1 and t2 amplitudes calculated with V_3

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O, N = 3</td>
<td>-124.389</td>
<td>-118.199</td>
<td>-118.208</td>
<td>-118.862</td>
<td>-118.872</td>
<td>-118.877</td>
</tr>
<tr>
<td>16O, N = 4</td>
<td>-140.896</td>
<td>-134.707</td>
<td>-134.710</td>
<td>-136.038</td>
<td>-135.891</td>
<td>-135.930</td>
</tr>
</tbody>
</table>

Hagen, Papenbrock, Dean, et. al., to be published.
Berggren Single-Particle Basis

\[1 = \sum_{n=a,b,c,d} |\psi_{i}(k_n)\rangle \langle \tilde{\psi}_{i}(k_n)| + \int_{L^+} dk \ k^2 |\psi_{i}(k)\rangle \langle \tilde{\psi}_{i}(k)|. \]
Gamow-Hartree-Fock basis for the He-isotopes.

Gamow Shell Model calculations with $V_{\text{low-k}}$ ($\Lambda = 1.9 \text{fm}^{-1}$) generated from the N3LO interaction model (Hagen, Hjorth-Jensen, Michel, Phys. Rev. C, in press).

Hole and particle states in ^4He calculated at Hartree-Fock level

<table>
<thead>
<tr>
<th>lj</th>
<th>$\Lambda = 1.8 \text{fm}^{-1}$</th>
<th>$\Lambda = 1.9 \text{fm}^{-1}$</th>
<th>$\Lambda = 2.0 \text{fm}^{-1}$</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_{1/2}$</td>
<td>-25.731</td>
<td>0.000</td>
<td>-24.541</td>
<td>0.000</td>
</tr>
<tr>
<td>$p_{3/2}$</td>
<td>0.819</td>
<td>-0.325</td>
<td>1.041</td>
<td>-0.479</td>
</tr>
<tr>
<td>$p_{1/2}$</td>
<td>2.497</td>
<td>-3.697</td>
<td>2.514</td>
<td>-3.777</td>
</tr>
</tbody>
</table>

Gamow Shell Model calculation of the 0^+ ground and 2^+ excited states in ^6He.

<table>
<thead>
<tr>
<th>J^π</th>
<th>0^+_1</th>
<th>2^+_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_{max}</td>
<td>Re[E]</td>
<td>Im[E]</td>
</tr>
<tr>
<td>4</td>
<td>-0.4760</td>
<td>0.0000</td>
</tr>
<tr>
<td>10</td>
<td>-0.4721</td>
<td>0.0000</td>
</tr>
<tr>
<td>16</td>
<td>-0.4721</td>
<td>0.0000</td>
</tr>
<tr>
<td>20</td>
<td>-0.4721</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Motivation

- Renormalized Interactions
 - CCSD
 - CCSD at the dripline

Conclusion

- **CCSD**: How deal with explosion of basis states?

- Very low neutron separation energy. \(p \)–orbits are the main decay channel and build up the main part of halo-densities.

- Protons have large separation energies (20-30 MeV), mainly occupying deeply bound \(s \)-orbits.

Neutrons

- 15s\(\frac{1}{2} \)
- 15p\(\frac{3}{2} \)
- 15p\(\frac{1}{2} \)
- 4d\(\frac{5}{2} \)
- 4d\(\frac{3}{2} \)

Protons

- 5s\(\frac{1}{2} \)
- 4p\(\frac{3}{2} \)
- 4p\(\frac{1}{2} \)
- 4d\(\frac{5}{2} \)
- 4d\(\frac{3}{2} \)

Neutron orbitals

- Neutron orbitals are Gamow states for s-p partial waves and Oscillators for higher partial waves (d-g)

Proton orbitals

- Proton orbitals are Oscillators restricted by \(N = 10 \) major shells and \(l_{\text{max}} \).

Building Nuclei From the Ground Up
CCSD calculation of the $^4_{-10}\text{He}$ ground states with the low-momentum N3LO nucleon-nucleon interaction ($\Lambda = 1.9\text{fm}^{-1}$) for increasing number partial waves. The energies E are given in MeV for both real and imaginary parts. (Hagen et. al. in preparation)

| lj | ^4He | | ^5He | | ^6He | | ^7He | | ^8He | | ^9He | | ^{10}He |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $s - p$ | -24.92 | 0.00 | -20.08 | -0.54 | -18.02 | -0.44 | -28.30 | 0.00 | -27.41 | -0.33 | -29.27 | 0.00 |
| $s - d$ | -26.58 | 0.00 | -23.45 | -0.23 | | | -17.02 | -0.24 | -16.97 | -0.00 | -15.28 | -0.40 |
| $s - f$ | -27.57 | 0.00 | | | -28.98 | 0.00 | -28.98 | 0.00 | -28.98 | 0.00 | -13.82 | -0.12 |

Expt. | -28.82 | -0.15 | -31.41 | 0.00 | -30.26 | -0.1 | -30.34 | ? | ? | ? | ? | ? |
CCSD has been implemented for two and three body forces, and we have extensive calculations of 16O.

Preliminary results with $V_{\text{low}-k}$ and corresponding three-body force for 16O. Larger model-space, more channels in $V3 \rightarrow$ more repulsion?

Two and three-body effective interactions generated via similarity transformation techniques are underway. No Λ dependence, convergence with respect to size of P.

CCSD has been applied with a Gamow basis suitable for description of loosely bound and unbound nuclear states along the dripline.
Coupled Cluster in pictures

\[T_1 = \sum_{i} t_i^a |\Phi_i^a\rangle, \quad T_2 = \sum_{i>j} t_{ij}^{ab} |\Phi_{ij}^{ab}\rangle, \quad T_3 = \sum_{i>j>k} t_{ijk}^{abc} |\Phi_{ijk}^{abc}\rangle \]

- \(m_A = N \), exact theory;
- \(m_A < N \), approximate theory

\[m_A = 2 \quad T = T_1 + T_2 \quad CCSD \quad n_o^2 n_u^4 \left(n_o^2 n_u^2 \right) \]

\[m_A = 3 \quad T = T_1 + T_2 + T_3 \quad CCSDT \quad n_o^3 n_u^5 \left(n_o^3 n_u^3 \right) \]
Coupled Cluster Amplitude Equations

In CCSD the single t_i^a and double excitation amplitudes t_{ij}^{ab} may be determined from

$$0 = \langle \Phi_i^a | H | \Phi_0 \rangle, \quad 0 = \langle \Phi_{ij}^{ab} | H | \Phi_0 \rangle;$$

known as the T_1 and the T_2 amplitude equations. Writing the Hamiltonian in normal-ordered form

$$H = \sum_{pq} f_{pq} \{ a_p^\dagger a_q \} + \frac{1}{4} \sum_{pqrs} \langle pq || rq \rangle \{ a_p^\dagger a_q^\dagger a_s a_r \} + \langle \Phi_0 | H | \Phi_0 \rangle$$
Coupled Cluster Amplitude Equations

\[0 = \langle ab | ij \rangle + \sum_c \left(f_{bc} t_{cij}^{bc} - f_{ac} t_{cij}^{ac} \right) - \sum_k \left(f_{ik} t_{kj}^{ik} - f_{jk} t_{kj}^{jk} \right) + \]

\[\frac{1}{2} \sum_{kl} \langle kl | ij \rangle t_{ij}^{ab} + \frac{1}{2} \sum_{cd} \langle ab | cd \rangle t_{cd}^{cd} + P(ij) P(ab) \sum_{kc} \langle kb | cj \rangle t_{cij}^{ab} + P(ij) \sum_c \langle ab | cj \rangle t_{cij}^{ac} - P(ab) \sum_k \langle kb | ij \rangle t_{kij}^{ab} + \]

Nonlinear terms in t2
(4th order)

T2 amplitudes from:

\[P(ab) \frac{1}{2} \sum_{kcd} \langle kl | cd \rangle t_{cd}^{cd} t_{cd}^{kcd} - P(ij) \frac{1}{2} \sum_{kcd} \langle kl | cd \rangle t_{cd}^{cd} t_{cd}^{kcd} + \]

\[P(ab) \frac{1}{2} \sum_k \langle kl | cij \rangle t_{cij}^{ab} + P(ij) \frac{1}{2} \sum_{cd} \langle ab | cd \rangle t_{cd}^{cd} - P(ij) P(ab) \sum_{ke} \langle kb | ic \rangle t_{cij}^{ab} + \]

\[P(ab) \sum_k f_{ik} t_{kj}^{ik} + P(ij) \sum_k f_{jk} t_{kj}^{jk} - P(ij) \sum_{kcd} \langle kl | cd \rangle t_{cd}^{cd} t_{cd}^{kcd} + P(ab) \sum_{kcd} \langle kl | cd \rangle t_{cd}^{cd} t_{cd}^{kcd} - P(ij) \sum_{kcd} \langle kl | cd \rangle t_{cd}^{cd} t_{cd}^{kcd} + \]

Question: Is this model independence also seen in A > 2 calculations?

Modern N-N interactions reproduce two-particle scattering data + deuteron properties.

They all differ in strength of tensor force and treatment of the hard-core.

V-lowk from different N-N models have the same on-shell and half-off-shell behaviour.

At the two-body level V-lowk is model-independent.

Question: Is this model independence also seen in A > 2 calculations?

Comparison with Shell Model/Configuration Interaction

In Shell Model approach a linear excitation operator is used instead of an exponential. \(\Psi = (1 + C)\Phi_0 = (1 + C_1 + C_2 + \ldots)\Phi_0 \)

- If truncated disconnected diagrams enter. And it is not size consistent.
- Dimension increases dramatically with number of active particles.
Coupled Cluster Results for ^{16}O

$V_{\text{lowk}}^{^{16}\text{O}}$ results using N3LO and CD-Bonn
Two-body matrix elements are calculated numerically in an arbitrary two-particle Gamow basis by truncating the completeness expansion up to N harmonic oscillator two-body states

$$
\langle ab|V_{osc}|cd\rangle \approx \sum_{\alpha \leq \beta} \sum_{\gamma \leq \delta} \langle ab|\alpha \beta\rangle \langle \alpha \beta|V_{low-k}|\gamma \delta\rangle \langle \gamma \delta|cd\rangle.
$$

(1)

The Gamow-Hartree-Fock basis may then be constructed,

$$
\langle p|h_{HF}|q\rangle = \langle p|t|p\rangle \delta_{p,q} + \sum_{i<e_f} \langle pi|V_{osc}|qi\rangle
$$

(2)
Coupled Cluster Results for 16O with three-body force

Initial V3-CCSD results
(proof of principle, Papenbrock, Hagen, et al)

(1): V2 only
(2): (1)+v3 normal ordered contribution to vacuum energy
(3): (1)+(2)+ v3 contribution to CCSD energy
(4): (1)+(2)+(3)+ v3 normal ordered contribution to one-body operator
(5): (1)+(2)+(3)+(4)+ v3 normal ordered contribution to two-body operator
(6): (1)+(2)+(3)+(4)+(5)+ t1 and t2 amplitudes consistently calculated with v3

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16O, N=3</td>
<td>-124.389</td>
<td>-118.199</td>
<td>-118.208</td>
<td>-118.862</td>
<td>-118.872</td>
<td>-118.877</td>
</tr>
<tr>
<td>16O, N=4</td>
<td>-140.896</td>
<td>-134.707</td>
<td>-134.710</td>
<td>-136.038</td>
<td>-135.891</td>
<td>-135.930</td>
</tr>
</tbody>
</table>
Motivation

Renormalized Interactions

CCSD

CCSD at the dripline

Conclusion

Coupled Cluster Equations

\[|\Psi\rangle = \exp(T)|\Phi\rangle \]

Correlated Ground-State wave function

Correlation operator

Reference Slater determinant

Energy

\[E = \langle \Phi | \exp(-T)H \exp(T) | \Phi \rangle \]

Amplitude equations

\[\langle \Phi_{ij\Lambda}^{ab\Lambda} | \exp(-T)H \exp(T) | \Phi \rangle = \langle \Phi_{ij\Lambda}^{ab\Lambda} | \overline{H} | \Phi \rangle = 0 \]

• Nomenclature
 • Coupled-clusters in singles and doubles (CCSD)
 • …with triples corrections CCSD(T);