

Reaction Rate of ¹⁵O(α,γ)¹⁹Ne via Indirect Measurements

THE ASTROPHYSICAL JOURNAL, **301**:629–633, 1986 February 15 © 1986 The American Astronomical Society. All rights reserved. Printed in U.S.A.

Wanpeng Tan University of Notre Dame

A NEW ESTIMATE OF THE ¹⁹Ne(p, γ)²⁰Na AND ¹⁵O(α , γ)¹⁹Ne REACTION RATES AT STELLAR ENERGIES

K. LANGANKE,¹ M. WIESCHER,² AND W. A. FOWLER W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena

AND

J. GÖRRES Department of Physics, University of Pennsylvania, Philadelphia Received 1985 May 24; accepted 1985 August 19

- ${}^{15}O(\alpha,\gamma){}^{19}Ne$ as the trigger of X-ray bursts
- The present uncertainties in ${}^{15}O(\alpha,\gamma){}^{19}Ne$
- The experiment & new results for ${}^{15}O(\alpha,\gamma){}^{19}Ne$
- Interpretation & Implication

X-Ray Bursts as Nuclear Laboratory

Fisker et al., astro-ph/0410561 (2005)

The Trigger of the Bursts

Burst is triggered by ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and by generating additional CNO fuel via the triple α process!

Many proposals and attempts to study J $i \times A^{15}O(\alpha, \gamma)^{19}Ne$ by direct & indirect approach

- Direct measurement is difficult!
 - An intense (10¹¹/s) radioactive ¹⁵O beam gives a count rate of <1/hr (estimated at ISAC, TRIUMF, 10⁹/s achieved at Louvain la Neuve)

- Indirect method has been approached many times!
 - Populate α -unbound states in ¹⁹Ne
 - Measure lifetimes or gamma widths
 - Measure α -decay branching ratios B_{α} ¹⁹F(³He,t- α)¹⁹Ne

¹⁷O(³He,n-γ)¹⁹Ne ¹⁹F(³He,t-α)¹⁹Ne

Reaction Rate of ¹⁵O(α , γ)¹⁹Ne

13/2

 $9/2^{+}$

 $-3/2^+$

 $-3/2^{-}$

Reaction Rate <u>4.60 4.64</u> $1/2^{+}$ 4.03 4.14 4.20 (7/2) (9/2) $N_A < \sigma_V > \propto T^{-3/2} \omega \gamma e^{-E_R/kT}$ $\frac{3.5294}{^{15}O + \alpha}$ determined by resonance energy E_R and strength $\omega\gamma$ $1/2^{+}$ 2.7947 where $\omega \gamma = \frac{2J_R + 1}{(2J_R + 1)(2J_T + 1)} B_{\alpha} \Gamma_{\gamma}$ $1.5081.536^{1.616}$ 1/2⁻\ 1/2⁺-1/2^{-/} Three measurable quantities characterize the resonance strength: 1/2-0.23830.2751 $1/2^{-}5/2^{+}$ $1/2^{-1}$ J^{π} , Γ_{v} , and $B_{\alpha} = \Gamma_{\alpha} / \Gamma_{tot}$ ¹⁹Ne $J^{\pi} = 1/2^{+}$ T = 1/2

Single resonance contribution!

Lab Layout at Notre Dame

B_α Exp ¹⁹F(³He,t-α)¹⁹Ne

Lifetime measurement using the Doppler-Shift Attenuation Method

• Measure lifetime to obtain decay width $\Gamma = \hbar / \tau$

$$E_{\gamma} = E_{\gamma_0} (1 + F(\tau)\beta\cos\theta)$$

Alpha-decay branching ratios

- Pursued at many places such as Yale, ANL, ORNL, Louvain-la-Neuve, KVI, TRIUMF and RIKEN
- Dominant resonance of 4.03 MeV state in ¹⁹Ne

– Its branching ratio Γ_{α}/Γ ~ 10⁻⁴

Experimental Setup

- Populate excited states in ¹⁹Ne
- > 3H-alpha coincidences \rightarrow alpha-decay branching ratios

one million of ³H populating 4.03 MeV State

Results of *a* -decay Branching Ratios

Ex [Me V]	Magnus90	RIKEN	Laird02	Rehm03	Davids03	Visser04	This work
4.03		<0.03	<0.01	<6x10 ⁻⁴	<4.3x10 ⁻⁴		2.9±2.1x10 ⁻⁴ ?
4.14 4.20			<0.01				1.2±0.5x10 ⁻³
4.38	0.044±0.03 2	<0.04		16±5x10 ⁻³	<3.9x10 ⁻³	(>0.0027)	1.2±0.3x10 ⁻³
4.55	0.07±0.03	0.09 ^{+0.04} -0.02			0.16±0.04	0.06±0.04	0.07±0.02
4.60	0.25±0.04	0.29 ^{+0.06} -0.04	0.32±0.0 3		0.32±0.04	0.208±0.02 6	0.26±0.03
4.71	0.82±0.15	0.67 ^{+0.23} -0.14			0.85±0.04	0.69 ^{+0.11} -0.14	0.80±0.15
5.09	0.90±0.09	1.11 ^{+0.17} -0.13	1.8±0.9	0.8±0.1	0.90±0.06	0.75 ^{+0.06} -0.07	0.87±0.03

Magnus90: Magnus et al, Nucl. Phys. A 506, 332 (1990)

- RIKEN: private communication from T. Motobayashi
- Laird02: Phys. Rev. C 66, 048801 (2002)
- Rehm03: Phys. Rev. C 67, 065809 (2003)
- Davids03: Phys. Rev. C 67, 012801R (2003)
- Visser04: Phys. Rev. C 69, 048801 (2004)

Reaction Rate of ¹⁵O(α , γ)¹⁹Ne

• More work needed for the near-threshold states

Competition between breakout & β-decay

¹⁵O β -decay t_{1/2}=122s
X_α=0.27

The ¹⁵O(α,γ) breakout reaction rate plays a critical role in the ignition phase of the X-ray burst!

Accretion Rate Dependence for XRB

Steady state surface burning predicted for low accretion rates!

¹⁵O(α,γ) Rate & Burst Structure

Low reaction rate quenches bursts Fisker et al., astro-ph/0410561 (2005) 10^{39} High rate \Rightarrow break-out \Rightarrow H-burning by rp-process Model 3: Lower Limit 10^{38} Low rate \Rightarrow He-depletion & HCNO $M_{accret} = 10^{17} g/s = 0.1 M_{edd}$ ອ [2] 10³⁷ \Rightarrow H-burning by 3 α fueled **HCNO** cycle 10^{38} New lower (1σ) limits \Rightarrow defines accretion rate limit for bursts! 10^{35} 20000 40000 60000 80000 n. t [s]

New limit of sensitivity for nuclear signatures has been reached!

Present Speculation

Conclusion

- The reaction rate of ${}^{15}O(\alpha, \gamma){}^{19}Ne$ has been determined by determining the lifetimes and branching ratios of α unbound states in ${}^{19}Ne$
- The results seem to provide more stringent limits on the burst behavior of accreting neutron stars.
- The results will be used to constrain other X-ray burst model parameters such as accretion rate, ignition conditions ...
- Future steps towards improvement requires
 - Precise measurement for the near threshold states (4.03, 4.14, & 4.20) in ¹⁹Ne
 - Direct measurement with intense radioactive beams?

Acknowledgements

Collaborators: W. Tan, J. Görres, J. Daly, H.Y. Lee,

M. Couder A. Couture, J.L. Fisker, E. Stech

University of Notre Dame