Cross sections of light-ion reactions calculated from *ab initio* wave functions

Christian Forssén

Nuclear Theory & Modeling Group, Lawrence Livermore National Laboratory

In collaboration with:

Petr Navrátil, W. Erich Ormand (LLNL), Etienne Caurier (IRES Strasbourg)

Nuclei in the Cosmos (NIC-IX), CERN, Geneva, June 29, 2006

UCRL-PRES-222139

This work was partly performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory, under contract No. W-7405-Eng-48.

Low-energy, light-ion reactions

- Underlying theory: Non-relativistic quantum mechanics of many interacting nucleons
- Only a few reaction channels are important
- Applications: nuclear astrophysics, thermonuclear fusion

Potential-model description

Dynamics of interacting nuclei described by simple local potentials

First-principles microscopic approach

- Fully antisymmetrized many-nucleon wave functions
- Realistic interactions between the nucleons

The microscopic ab initio approach

Aiming for truly predictive power...

Nuclear physicists now have access to:

- State-of-the-art nuclear Hamiltonians
 - Can either have roots in QCD or be based on traditional mesonexchange theory
 - Empirical in that they accurately fit a wealth of NN scattering data
- State-of-the-art nuclear many-body methods
 - A few methods are available for A>4 with the use of realistic interactions
- State-of-the-art computing facilities

The ab initio no-core shell model

- It is a general approach for studying strongly interacting, quantum many-body systems.
- It has been applied with great success to nuclear systems,
 - with NN as well as 3N interactions
 - using local, as well as non-local potentials
 - up to A=20 (in smaller model spaces)
- A matrix diagonalization technique to solve the translational invariant A-body problem in a finite harmonic oscillator basis
- Basis truncation defined by the total number of oscillator quanta excitations ($\leq N_{max}h\Omega$) for the A particles
- Unitary transformation of the bare Hamiltonian performed to compute model-space dependent effective interaction

See, e.g., P. Navrátil, et al, Phys. Rev. C 62, 054311 (2000).

"Taking the model out of the shell model"

Lawrence Livermore National Laboratory

We can characterize the weight of a particular cluster component of a full A-body eigenstate by cluster overlap functions:

$$g_{\nu}\left(\vec{r}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| \Psi^{(A)} \right\rangle \quad \text{where} \quad \Phi_{\nu}^{(A)}(\vec{r}) = \mathcal{A}_{\nu} \left\{ \Phi_{1\nu} \Phi_{2\nu} \delta(\vec{r_{\nu}} - \vec{r}) \right\}$$

$$S_{\nu} = \int d^{3}r |g_{\nu}(\vec{r})|^{2} \quad \text{- "Spectroscopic factor"} \quad \Longrightarrow \begin{array}{c} \text{coefficients of parentage} \end{array}$$

We can characterize the weight of a particular cluster component of a full A-body eigenstate by cluster overlap functions:

$$g_{\nu}\left(\vec{r}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| \Psi^{(A)} \right\rangle \quad \text{where} \quad \Phi_{\nu}^{(A)}(\vec{r}) = \mathcal{A}_{\nu} \left\{ \Phi_{1\nu} \Phi_{2\nu} \delta(\vec{r}_{\nu} - \vec{r}) \right\}$$

$$S_{\nu} = \int d^{3}r |g_{\nu}(\vec{r})|^{2} \quad \text{-"Spectroscopic factor"} \quad \Longrightarrow \begin{array}{c} \text{coefficients of parentage} \end{array}$$

Lawrence Livermore National Laboratory

We can characterize the weight of a particular cluster component of a full A-body eigenstate by cluster overlap functions:

$$g_{\nu}\left(\vec{r}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| \Psi^{(A)} \right\rangle \quad \text{where} \quad \Phi_{\nu}^{(A)}(\vec{r}) = \mathcal{A}_{\nu} \left\{ \Phi_{1\nu} \Phi_{2\nu} \delta(\vec{r}_{\nu} - \vec{r}) \right\}$$

$$S_{\nu} = \int d^{3}r |g_{\nu}(\vec{r})|^{2} \quad \text{- "Spectroscopic factor"} \quad \Longrightarrow \begin{array}{c} \text{coefficients of parentage} \end{array}$$

Lawrence Livermore National Laboratory

We can characterize the weight of a particular cluster component of a full A-body eigenstate by cluster overlap functions:

$$g_{\nu}\left(\vec{r}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| \Psi^{(A)} \right\rangle \quad \text{where} \quad \Phi_{\nu}^{(A)}(\vec{r}) = \mathcal{A}_{\nu} \left\{ \Phi_{1\nu} \Phi_{2\nu} \delta(\vec{r}_{\nu} - \vec{r}) \right\}$$

$$S_{\nu} = \int d^{3}r |g_{\nu}(\vec{r})|^{2} \quad \text{- "Spectroscopic factor"} \quad \Longrightarrow \begin{array}{c} \text{coefficients of parentage} \end{array}$$

Lawrence Livermore National Laboratory

Next example: how much does ¹¹Be_{gs} look like ¹⁰Be_{gs}+n?

Large-scale NCSM calculations with convergence tests for several A=9-13 isotopes C. Forssén *et al*, Phys. Rev. C 71 (2005) 044312

Model space	Spec. factor
(4-5)hΩ	0.831
(6-7)hΩ	0.818

- Pauli principle inherent
- Stable spectroscopic factor
- Stable interior
- Incorrect asymptotics

CD-Bonn 2000

$$\hbar\Omega = 14 \text{ MeV}$$

$$(4-5), (6-7)\hbar\Omega$$

Radiative capture cross sections

Electromagnetic transition probability from 1st order perturbation theory

$$T_{\rm fi} = \frac{2\pi}{\hbar^2} \left| \left\langle \Psi_f^{(A)} \left| H_{\rm int} \right| \Phi_i^{(A)} \right\rangle \right|^2$$

<u>Using ab initio structure information:</u>

- Final (bound) A-body state, as well as projectile and target eigenstates are obtained from NCSM.
- Cluster overlaps calculated for a few relevant two-body channels.
- Spectroscopic factors equals the integrals of the cluster overlaps.
- Supplemental input:
- Scattering wave function.
- Experimental threshold energies (see next slide).

Having a physically accurate picture is very important

Asymptotic behaviour:

HO single-particle basis states

$$\varphi_{nlm}(r) \sim \exp\left(-r^2/b^2\right)$$

Physical bound-state wave function

$$u(r)\sim \exp{(-\kappa_0 r)}/r$$
 where $\kappa_0\propto \sqrt{E_0}$

 Construct effective interfragment potentials V_{eff}(r)

$$[T + V_{\text{eff}} - E_0] u(r) = 0$$

 Renormalize the solution by NCSM spectroscopic factor

$$\hbar\Omega = 14 \text{ MeV}$$

$$(6-7)\hbar\Omega$$

Exp. treshold energy

CD - Bonn 2000

Results, inhomogeneous BB scenarios: ¹⁰Be(n,γ)¹¹Be

Suggestion: Inhomogenities in the distribution of baryons during the primordial nucleosynthesis can lead to the production of heavy elements.

See, e.g., T. Rauscher et al., Ap. J. **429**(1994)499

- ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{-}){}^{12}\text{C}(n,\gamma){}^{13}\text{C}(n,\gamma){}^{14}\text{C}(n,\gamma){}^{15}\text{C} \dots$
- ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(n,\gamma){}^{9}\text{Li}(\beta^{-}){}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}(n,\gamma){}^{11}\text{Be}(\beta^{-}){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{-}){}^{12}\text{C}(n,\gamma) \dots$

Study of 10 Be(n, γ) 11 Be:

- Cluster overlaps of bound states fitted in the 0-4 fm range. Model spaces up to $7h\Omega$
- Scattering states calculated from the same potentials.
- Our result updates two earlier estimates:
 - 1. p-wave capture dominates
 - 2. Resonant capture is negligible
- Most likely confirm the conclusion that $^8\text{Li}(\alpha, n)^{11}\text{B}$ is the relevant bottleneck in the IBBN reaction network.

Results, solar pp chain: ⁷Be(p,γ)⁸B

SSM experts tell us that certain cross sections are not known with the required precision:

- 7 Be(p, γ) 8 B
- ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

J.N. Bahcall, PRL 92, 121301 (2004)

⁷Be(p,γ)⁸B study

- CD-Bonn 2000 NN interaction, model spaces up to $10h\Omega$
- Cluster overlaps fitted to W-S potential solution in 0-4 fm range
- Scattering state from a potential model that fits ⁸B(1+) resonance

$$S_{17} = 22.1 \pm 1.0 \text{ eV} \cdot \text{b}$$

Results, solar pp chain: ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ - Preliminary!

SSM experts tell us that certain cross sections are not known with the required precision:

- 7 Be(p, γ) 8 B
- ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$

J.N. Bahcall, PRL 92, 121301 (2004)

3 He(α , γ) 7 Be study

- CD-Bonn 2000 NN interaction, model spaces up to $10h\Omega$
- Cluster overlaps fitted to W-S potential solution in 0-3.6 fm range
- Scattering state from a potential model that fits phase shifts
- Results similar to K. Nollett's calculations using the VMC overlap

Convergence tests underway...

Summary and outlook

- We have the tools and techniques to study strongly interacting, fermionic quantum many-body systems.
- First attempts of combining ab initio nuclear structure information with the modeling of low-energy reactions are being performed.
- There are dedicated efforts to achieve a truly fundamental description of nuclear reactions.

RGM equations, coupled integro-differential equations:

$$\sum_{\nu'} \int d^3r' \Big[H_{\nu\nu'} \left(\vec{r}, \vec{r'} \right) - E N_{\nu\nu'} \left(\vec{r}, \vec{r'} \right) \Big] \varphi_{\nu'}(\vec{r'}) = 0$$

Appendix

Shell model codes and convergence

- Diagonalization of huge, but sparse, matrices
- M-scheme shell model codes: MFD, REDSTICK, <u>ANTOINE</u>

ANTOINE:

- E. Caurier and F. Nowacki, Acta Phys. Pol. B**30**(1999)705
- Can find eigenvalues of matrices with dimensions ~10⁹

⁶Li(1+) with the INOY interaction: • Independent of Ω when $N_{max} \rightarrow \infty$ Not a variational calculation different N_{max} -20⁶Li E (MeV) INOY (ISa-A) $h\Omega$

A case study: ¹¹Be and its possible role in the early universe

Interesting structure

Quenching of the shell gap

11
Be(g.s.) = 1/2+

Talmi and Unna, PRL4(1960)469

A ¹¹Be 9h Ω model space:

- 66 orbits
- 572 $|nljm\rangle$ s.p. states

¹¹Be in non-standard Big Bang scenarios

Suggestion: Inhomogenities in the distribution of baryons during the primordial nucleosynthesis can lead to the production of heavy elements.

Breakout from the standard Big Bang nucleosynthesis:

• ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{-}){}^{12}\text{C}(n,\gamma){}^{13}\text{C}(n,\gamma){}^{14}\text{C}(n,\gamma){}^{15}\text{C} \dots$

¹¹Be in non-standard Big Bang scenarios

Alternative reaction flows are theoretically possible. Many of the important cross sections have not been measured!

Alternative breakout:

- ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(\alpha,n){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{-}){}^{12}\text{C}(n,\gamma){}^{13}\text{C}(n,\gamma){}^{14}\text{C}(n,\gamma){}^{15}\text{C} \dots$
- ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}(n,\gamma){}^{9}\text{Li}(\beta^{\text{-}}){}^{9}\text{Be}(n,\gamma){}^{10}\text{Be}(n,\gamma){}^{11}\text{Be}(\beta^{\text{-}}){}^{11}\text{B}(n,\gamma){}^{12}\text{B}(\beta^{\text{-}}){}^{12}\text{C}(n,\gamma) \dots$

A large-scale ab initio NCSM study of 9-11Be

- Large-scale calculations with convergence tests were performed for several A=9-13 isotopes.
- Model spaces exceeding 1×10⁹ were reached.
- Effects of different NN interactions on spectroscopy and other observables were studied.
- Particular focus on the parity-inversion, which was not reproduced. Indications that 3N forces are important.
- However, the wave functions seem to be well converged and we can investigate cluster overlaps.

C. Forssén et al, Phys. Rev. C 71 (2005) 044312

¹¹Be spectra

- Remarkable agreement between the predictions of different, high-precision NN interactions.
- Unnatural-parity states are too high - but dropping.

New possibility: input from ab initio nuclear structure

Input from *ab initio* **NCSM**:

- Corrected cluster overlaps with calculated spectroscopic factors for the two bound states.
- This procedure also provides **effective interfragment potentials** that are used for *l=0* and *l=1* scattering states.
- An l=2 effective potential is obtained by a fit to the $^{10}\text{Be}_{gs}+n(d_{5/2})$ overlap with the **5/2**+ **resonance**.
- **E2 transition strength** from the 5/2+ resonance obtained from the A-body NCSM calculation

5/2+ ____ 1.778

Resonating Group Method - a microscopic approach

$$(H - E) \Phi^{(A)} = 0$$

Time-independent Schrödinger equation for A-body scattering.

is decomposed into various "channels" v:

Here, we focus on two-cluster channels:

$$\Phi^{(A)} = \sum_{\nu} \mathcal{A}_{\nu} \Big\{ \Phi_{1\nu} \Phi_{2\nu} \varphi_{\nu}(\vec{r}_{\nu}) \Big\} = \sum_{\nu} \int d^3r \varphi_{\nu}(\vec{r}) \Phi_{\nu}^{(A)}(\vec{r})$$
 expansion coefficient

basis functions:
$$\Phi_{
u}^{(A)}(ec{r}) = \mathcal{A}_{
u} \Big\{ \Phi_{1
u} \Phi_{2
u} \delta \left(ec{r}_{
u} - ec{r}
ight) \Big\}$$

RGM equations-of-motion

RGM equations, coupled integro-differential equations:

$$\sum_{\nu'} \int d^3r' \Big[H_{\nu\nu'} \left(\vec{r}, \vec{r'} \right) - E N_{\nu\nu'} \left(\vec{r}, \vec{r'} \right) \Big] \varphi_{\nu'}(\vec{r'}) = 0$$

The RGM basis functions are non-orthogonal (at short distances):

$$N_{\nu\nu'}\left(\vec{r}, \vec{r'}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| \Phi_{\nu'}^{(A)}(\vec{r'}) \right\rangle$$

• H is the full, microscopic Hamiltonian (3A-3 coordinates are involved)

$$H_{\nu\nu'}\left(\vec{r}, \vec{r'}\right) = \left\langle \Phi_{\nu}^{(A)}(\vec{r}) \middle| H \middle| \Phi_{\nu'}^{(A)}(\vec{r'}) \right\rangle$$

• A fully orthogonal representation can be found by introducing $N^{1/2}$, $N^{-1/2}$

