Neutrinos and Nucleosynthesis in Gamma Ray Bursts (black hole accretion disks)

NIC 2006
Rebecca Surman
Union College

Nucleosynthesis in the Outflow

Follow material

- through disk
- as ejected in outflow

Electron fraction set by:

$$e^{-} + p \leftrightarrow n + V_{e}$$

 $e^{+} + n \leftrightarrow p + \overline{V}_{e}$

Disk models:

Low accretion rate disks - $n\dot{X} < 1$, where $n\dot{X} = 1 \Rightarrow 1$ solar mass/second Popham, Woosley, and Fryer (1999)

High accretion rate disks - $nX \ge 1$ DiMatteo, Perna, and Narayan (2002)

Surman & McLaughlin, ApJ, 603, 611 (2004)

Evolution of Y_e in the disk

DPN $n\hat{X}=1.0$

Outflow Parameterization

Take velocity as a function of radial distance from the black hole to be

$$u = v_{\infty} \left(1 - \frac{R_o}{R} \right)^{\beta}$$

where $5,000 < v_{\infty} < 50,000$ km/s, $0.2 < \beta < 3.0$

Take flow to be vertical at first, then radial

Consider adiabatic flows with entropy 10 < s < 50

Neutrino Decoupling Surfaces

Neutrino flux coming from disk is dominated by contribution from optically thick region

- \Rightarrow When antineutrino surface is large, the antineutrinos tend to dominate (higher T_{ν}) $\overline{v}_{e} + p \rightarrow n + e^{+}$
- \Rightarrow If antineutrino surface is small or nonexistent, neutrino flux dominates $\nu_{_{e}}+n\rightarrow p+e^{-}$

Nuclear Recombination in the Outflow

```
Full nuclear network code:
```

```
W. R. Hix, J. Comp. Appl. Math., 109, 321 (1999) (J. Beun, R. Surman)
```

r-process nucleosynthesis code:

J. Walsh, B.S. Meyer, R. Surman

```
Look for: * <sup>56</sup>Ni
```

* rare nuclear species:

p process

r process

Low accretion rate => Nickel Synthesis

PWF

$$n\acute{Y} = 0.1$$

$$r_o = 100 \text{ km}$$

$$v_{\infty} = 0.1c$$

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

⁵⁶Ni mass fraction

Lines indicate Ye

Surman, McLaughlin & Hix, ApJ, 643, 1057 (2006)

Moderate accretion rates => Nickel Synthesis

DPN

$$n\hat{Y}=1.0$$

$$r_o = 250 \text{ km}$$

$$v_{\infty} = 0.1c$$

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

⁵⁶Ni mass fraction

3.0 64**Z**n 2.5 2.0 1.5 1.0 0.5 3.0 49**T**i 2.5 2.0 1.5 1.0 49Ti 0.5 3.0 2.5 2.0 1.5 1.0 45Sc 0.5 10 20 30 40 50

Overproduction Factors

$$O(j) = \left(\frac{M_{wind}}{M_{SN \, ejecta}}\right) \times \left(\frac{X_{wind}}{X_{solar}}\right)$$

PWF

$$\acute{M} = 0.1$$

 $r_o = 100 \text{ km}$
 $v_{\infty} = 0.1c$

Surman, McLaughlin, & Hix, ApJ, 643, 1057 (2006)

⁶⁴Zn

Surman, McLaughlin, & Hix, ApJ, 643, 1057 (2006)

High accretion rate => *r*-Process Nucleosynthesis

Metal-poor Halo Star data

From J. Cowan's talk, 6/27/06

Conclusions

Given disk and outflow parameters, we can determine what nucleosynthesis will result from an understanding of the neutrinos

Nucleosynthesis in accretion disk outflows provides a promising mechanism for GRB nickel production

Additionally, GRBs may contribute to the galactic abundances of certain rare nuclear species, such as *r*-process nuclei or light/intermediate mass protonrich nuclei such as ⁶⁴Zn, ⁴⁵Sc, and ⁹²Mo