

Contribution ID: 156

Type: **Oral contribution**

The Role of Neutrinos in Explosive Nucleosynthesis

Wednesday, 28 June 2006 09:00 (20 minutes)

A new nucleosynthesis process, that we denote νp -process, will be presented. It occurs in supernovae (and possibly gamma-ray bursts) when strong neutrino fluxes create proton-rich ejecta. In this process, antineutrino absorptions in the proton-rich environment produce neutrons that are immediately captured by neutron-deficient nuclei. This allows for the nucleosynthesis of nuclei with mass numbers $A > 64$. Making this process a possible candidate to explain the origin of the solar abundances of the light p-nuclei (such as $^{92,94}\text{Mo}$ and $^{96,98}\text{Ru}$). This process also offers a natural explanation for the large abundance of Sr seen in an hyper-metal-poor star.

Author: FROHLICH, Carla (University of Basel)

Co-authors: THIELEMANN, Friedrich-Karl (University of Basel); MARTINEZ PINEDO, Gabriel (GSI Darmstadt); LIEBENDOERFER, Matthias (University of Basel)

Presenter: FROHLICH, Carla (University of Basel)

Session Classification: 9 Element production, stellar evolution, and stellar explosions

Track Classification: Element production, stellar evolution and stellar explosions