Nuclear Astrophysics with Gamma-Ray Line Observations

- Cosmic Gamma-Ray Spectroscopy Measurements and their Interpretations -

by Roland Diehl (MPE Garching, Germany)

Nucleosynthesis Sources / Study Objectives:

☆ Supernovae
☆ Massive Stars
☆ Positrons
Nuclei in the Cosmos IX, CERN, 26 Jun 2006

from work done with H. Halloin, K. Kretschmer, A. Strong, W. Wang (MPE), P. Jean, J. Knödlseder, J.P. Roques, G. Weidenspointner (CESR), C. Wunderer (UCB), H. Hartmann (CU), & more INTEGRAL/SPI Team members

Gamma-Rays: Messengers of Nuclear Physics Special Characteristics:

Gamma-Rays: Messengers of Nuclear Physics Special Characteristics:

Emission due to Radioactivity
 No "Activation" (thermal, ionization)
 Isotopic Information
 Related to Specific Nuclear Reactions
 Penetrating Radiation
 No Occultation Corrections

Proton -> Neutron

☆ Penetrating Radiation
 ☞ Poor Imaging Resolution (deg...arcmin)
 ☆ Low Signal, High Background
 ☞ Galactic Sources, SN Ia < 10Mpc

Gamma-Ray Lines for Nucleosynthesis Studies

Radioactive Trace Isotopes as Nucleosynthesis By-Products

- For Gamma-ray Spectroscopy We Need:
 - Decay Time > Source Dilution Time

Yields > Instrumental Sensitivities

Isotope	Mean Lifetime	Decay Chain	γ - Ray Energy (keV)
⁷ Be	77 d	7 Be \rightarrow 7 Li*	478
⁵⁶ Ni	111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e ⁺	158, 812; 847, 1238
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122
²² Na	3.8 у	22 Na $\rightarrow ^{22}$ Ne* + e ⁺	1275
⁴⁴ Ti	85 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e ⁺	78, 68; 1157
²⁶ A1	1.04 10 ⁶ y	$^{26}\text{Al} ightarrow ^{26}\text{Mg}^{*} + e^{+}$	1809
⁶⁰ Fe	2.0 10 ⁶ y	60 Fe $ ightarrow$ 60 Co* $ ightarrow$ 60 Ni*	59 , 1173, 1332
e⁺	10 ⁵ y	$\mathbf{e}^+ + \mathbf{e}^- \to \mathbf{Ps} \to \gamma\gamma$	511, <511

INTEGRAL: Ge Spectrometer Works in Space!

17 October 2002: 06:41 Launch of Integral from Baikonur / Kasachstan

Nuclei in the Cosmos IX, CERN, 26 Jun 2006

SPI: Coded-Mask Telescope 15-8000 keV Energy Resolution ~2.2 keV @ 662 keV Spatial Precision 2.6° / ~2 arcmin Field-of-View 16×16°

Roland Diehl

INTEGRAL Observations & Mission Status

Status Today (Summer 2006):

- ☆ No Major Failures
- ☆ Diversity of Science Results
- ☆ ESA-approved Mission Horizon: 2008 (...>2010)

RHESSI:

The Ramaty High-Energy Solar Spectroscopic Imager

☆ Launch 5 Feb 2002

☆ Science Target: Particle Acceleration Processes in Solar Flares

☆ Instrumentation:

- Imaging System (Rotating Modulator)
- Spectrometer
 9 Ge Crystals

Solar + Some Cosmic Gamma-Ray Studies

> Earth Occultation Imaging

PI: R.P. Lin
Collaboration UCB, PSI,

GSFC, ETH, ... C NASA SMFX Mission

© NASA SMEX Mission Nuclei in the Cosmos IX, CERN, 26 Jun 2006

Result Summary

Spectra of ²⁶Al Emission Across Galactic Plane

☆ Galactic ²⁶Al Studies are in Progress for

Understanding Massive-Star Nucleosynthesis Understanding Massive-Star Content & Actions in the Galaxy

The Positron-Annihilation Sky is a Surprise

Expected Galactic Sources of Positrons are Located Throughout the Galactic Plane and Disk

Annihilation Gamma-rays Come Mainly from the Inner Galaxy

⁶⁰Fe Emission is Seen from the Galaxy

☆ Gamma-ray Signal Now Beyond 'Hints'/'Limits' (5σ) ^{©™ 60}Fe/²⁶Al Emission Ratio ~15%

"44Ti from cc-SNe" is Still an Open Issue

☆ Cas A is Still the Only Source Clearly Detected ☆ Non-Detection with SPI May Imply High ⁴⁴Ti Ejection Velocity

Still No Luck with SNIa Events

SNela (1990-2005) Galactic coordinates

Spectroscopy Can Discriminate Between Models only for Nearby (hence rare) SNe (<5 Mpc)</p>

Still No Nova Lines Detected

Expectations for I_{22Na} ~ Factor 10 Below Instrumental Sensitivities

²²Na Line: SPI Galactic Bulge Skymap

Jean et al. 2005 Testing for a Nova Galaxy Model

Gamma-Ray Lines Probe the Active Sun

☆ Images of Flare Regions:

Different Locations for Electron and Ion Accelerations?

Hurford et al. 2003

200

400

600

time (s)

800

Kiener et al. 2005 Roland Diehl

1000

1200

😃 Details...

(selected)

Nucleosynthesis in CC-Supernova Models and ⁴⁴Ti

89 y ${}^{44}\text{Ti} \rightarrow {}^{44}\text{Sc}^* \rightarrow {}^{44}\text{Ca}^{*+e^+}$ 78, 68; 1157

Nuclei in the Cosmos IX, CERN, 26 Jun 2006

Roland Diehl

⁴⁴Ti γ -rays from Cas A

⁴⁴Ti Ejected Mass ~0.8-2.5 10⁻⁴ M_o

"Normal" Core Collapse Supernovae as ⁴⁴Ti Sources?

- ☆ ⁴⁴Ti vs. ⁵⁶Ni: Models compared to
 - Solar ⁴⁴Ca
 - SN1987A & Cas A
 - Only Non-Spherical Models Reproduce Observed ⁵⁶Ni/⁴⁴Ti Ratios

Sky Regions with Most Massive Stars are ⁴⁴Ti Source-Free (COMPTEL, INTEGRAL)

"44Ti from cc-SNe" is Still an Open Issue

 \Rightarrow Cas A is Still the Only Source Clearly Detected in γ -rays

4 Independent Instruments

☆ Non-Detection with SPI May Imply High ⁴⁴Ti Ejection Velocity

- Result from 3 Ms:
- ^{CP} Broadened Line Would 'Drown' in SPI's Instrumental Background

⁶⁰Fe: Why is it Interesting?

2.0 10^6 y 60 Fe $\rightarrow {}^{60}$ Co* $\rightarrow {}^{60}$ Ni* 59, 1173, 1332

60Fe is Produced through Successive Neutron Captures © r-Process Astrophysics...

☆ ⁶⁰Fe has been Detected in Pacific Ocean Crust [®] Nearby SN ~2 My ago?

☆ Massive Stars are Likely Sources of ⁶⁰Fe

Observable in the Galaxy (as ²⁶Al is)?

Compare Two Isotopes from Same Sources! Nuclei in the Cosmos IX, CERN, 26 Jun 2006

First ⁶⁰Fe Indications from the Galaxy with RHESSI & SPI/INTEGRAL

A RHESSI

- \Rightarrow 2.6 σ Detection
 - @ Smith 2004
- ☆ I=0.63 ±0.5 10⁻⁴ ph cm⁻² s⁻¹
 - Smith 2005

A SPI

$\, \bigstar \, \textbf{3} \, \sigma \, \textbf{Detection}$

- ☆ I=0.4 ±0.2 10⁻⁴ ph cm⁻² s⁻¹
 - 🖙 Harris et al. 2005

Nuclei in the Cosmos IX, CERN, 26 Jun 2006

Roland Diehl

⁶⁰Fe Gamma-Rays: SPI Update

June 2006

☆ Four independent measurements ⇒ 4.9 σ significance (combined)
 ☆ Reduced systematics from instrumental lines
 ☆ ⁶⁰Fe/²⁶Al γ-ray Intensity Ratio 14.8 (±6) %

Nuclei in the Cosmos IX, CERN, 26 Jun 2006

Roland Diehl

⁶⁰Fe from Massive Stars: Observations vs. Theory

2.0 10⁶y 60 Fe \rightarrow 60 Co* \rightarrow 60 Ni*

59, 1173, 1332

☆ Improved Models Agree with Data on ⁶⁰Fe/²⁶Al γ-Ray Intensity Ratio [®]But: Uncertainties are Large

²⁶Al/⁶⁰Fe Flux Ratio: Observations versus Theory

Revised Yields Had Led to Higher Predicted Ratios ~1.0

Revised Stellar Models Again Reduced Predicted Ratios

Assessments Needed:
 Stellar Models
 Nuclear Physics
 Gamma-Ray ⁶⁰Fe Signal Origin

²⁶Al in the Galaxy: Massive-Stars... and more

Nuclei in the Cosmos IX, CERN, 26 Jun 2006

Roland Diehl

Imaging the ²⁶Al Sky with SPI

High-Resolution Gamma-Ray Spectroscopy in Space: SPI on INTEGRAL

Cosmic-Ray Bombardement

 Crystal Degradation
 ~2% per Orbit, ~20% in 6 Months (@1 MeV)

 Annealing

High-Resolution Spectroscopy with SPI

Cosmic-Ray Damage of Charge Collection Degradation with time, Annealings

Time-Variable Spectral Response

- ☆ Line Shape = Convolution [Gaussian * Exponential]
- ☆ Degradation Model (piece-wise linear)
- Next: Correct Short-term (<1 Orbit) Gain Variations with Detector Temperatures

²⁶Al Line Shape from the Inner Galaxy

-> Diehl et al., A&A 2006

Update: ²⁶Al from the Galaxy

June 2006

☆ Orbits 15-259 (27 Nov 2002 - 28 Nov 2004)

☆ Orbits 39-358 (7 Feb 2003 - 21 Sep 2005)

☆ No Changes in Results:

Intensity ~3 10⁻⁴ ph cm⁻² s⁻¹ rad⁻¹
Narrow Line

This Data Sample:

- Avoid Data with Changing Instrument Configurations
- Stabilize Background Model with More & Homogeneous Data

²⁶Al Line Shapes for Different Regions

- ²⁶Al Reflects Sources of Nucleosynthesis (τ~10⁶y)
- COMPTEL Imaging -> Massive Stars are Dominating Sources
- Decay in ISM -> narrow line
- Large Cavities -> broad line
- Young Clusters -> broad line

INTEGRAL/SPI Task: Spectroscopy for ²⁶Al Source Regions

Galactic Rotation and the ²⁶Al Line

-> Diehl et al., Nature 2006

☆ Galactic Rotation Affects the Line Centroid ~as Expected

- Consolidation: These sources are NOT Localized
- Basis for GALACTIC ²⁶Al Amount Determination using geometrical / tracer models
- Measurements of

✓ ²⁶Al Mass in Galaxy = 2.8 (±0.8) M_{\odot} ✓ cc-SN Rate = 1.9 (± 1.1) per Century

Galactic Supernovae from Massive Stars

Core-Collapse Supernova Rates

Annihilation of Positrons in the Galaxy

511 keV Line Emission Imaging with SPI:

- Extended, ~bulge-like Emission (δI~8°,δb~8°)
- No/Weak Disk Emission Seen; No "Fountain"

Positron Budget and Annihilation Gamma-Ray Flux

Annihilation of Positrons in the Galaxy

Positron
 Transport
 from
 Disk Regions
 to
 Inner Galaxy?

Summary:

Nuclear Astrophysics with Gamma-Ray Line Observations

- Ge Spectroscopy Opened a New Stage for Nuclear Astrophysics
- ²⁶Al in the Galaxy Reveals Massive-Star Activity
- 60Fe/26Al Ratio Constrains Massive-Star Nucleosynthesis Models
- Positron Annihilation Poses Puzzle for Additional Sources or Large-Scale Positron Transport
- Studies of 3D Effects in Supernovae Interiors Still Lack Good Measurements (& Luck)

