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Why use Indirect Techniques?

Get cross sections difficult for direct studies!
Including:

e Reaction rates on radioactive nuclei

o Capture through subthreshold states
* Direct capture to add to resonant capture

e Screening and low-energy extrapolations
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Some Indirect Techniques
[focus on reaction rates]

resonant
capture

Widths (y and ‘p’) of resonance rates }

- populate resonance state and measure decay
Resonance energies — determine Eg
Coulomb dissociation (T. Motobayashi)
Trojan Horse Method v'**

- unigue way to understand screening

Asymptotic Normalization Coefficients v
- use with stable and radioactive beams

**Experts in audience for detailed questions!
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Radiative [p(o)] Capture with resonant
and subthreshold states: ANCs

Capture through resonance
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Radiative [p(a)] Capture with resonant
and subthreshold states: ANCs
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Direct capture
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Radiative [p(o)] Capture with resonant
and subthreshold states: ANCs
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Measuring ANCs:
Transfer Reactions
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ANC Examples:
capture at stellar energies

DC.:

* Be(p,y)®B and 'Be + p < °B

e 2?2Mg(p,y)??Al and %°Ne + n <> 23Ne

DC through subthreshold state:

e 1N(p,y)'0 and N + p < 150

e 13C(o,n)*0O and °C + o < 'O (2 posters)
DC and resonance interference:

e 13N(p,y)**0 and BN + p & 140

T



S factor for ‘Be(p,y)°B

e S factor dominated by direct capture—our
published value via ANCs from two (‘Be,®B)
transfer reaction studies:

S(0)=18.0+£19eV-b

» Result low by about 2 6 compared to most recent
direct measurement (?)

» Details about 'Be(p,y)eB from C.D. in later talk
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CNO Cycles




some preliminary results
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C*(E,=6.79 MeV) = 27 fm™! [non-resonant capture to this

state dominates S factor]
S(0) = 1.41 £ 0.24 keV:'b for E =6.79 MeV

e S,.(0)=1.62+0.25keV-b
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S factor for “N(p,y)*°0O

« S factor dominated by direct capture to the
subthreshold state—our published value
S(0)=1.62 £0.25 keV-b

reduces previous results by = 2

 New direct measurements from LUNA (1.7+0.2) and
LENA (1.68+0.09+0.16) IN excellent agreement with this

e Impacts stellar luminosity at transition period to red
glants and ages of globular clusters by about 1 Gyr
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Hot CNO Cycle and ~>N(p,¥)**O

CNO

Hot CNO
(T4=0.2)
Hot CNO
(T9=0.4)
Breakout
Reactions
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Slide 13

PC1 After star runs out of pp chain fuel, CNO cycle would take over. When T9>0.1, the p capture rate on 13N could become of the same order or
faster than its beta decay. As a result, hot CNO cycle will replace the normal CNO cycle to operate. So 13N(p,g)140 is a important reaction

which determine the transition condition from CNO to hotCNO.
Preferred Customer, 1/15/2003



14N (13N, 140)13C

(ANC for *N —° C +p)
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S Factor for **N(p,y)**O

For Gamow peak at T4=0.1,
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Jransition from CNO to HENO

Crossover at T4 = 0.2
BN(p,y)40 vs B decay

4N(p,y)0 vs B decay

For novae find that
AN(p,7)1°0 slower
than 13N(p,y)140;

- 14N(p,y)*°0 dictates

A i el energy production
Tg




S factor for 13C(a,n)°0
and s-process neutrons

S factor dominated by subthreshold state (E,=6.356 MeV)
16
B {rn =124keV; E,=2.22Mev;
o) T _ .0 —1-1 —(
> O > J7=1/2% | =11, =0;

ANC from °Li(13C,d)1’O — sub Coulomb transfer

(recent result from Florida State University and TAMU, earlier result - Kubono)

ANC +T", gives S(0) =2.36 £ 0.52 x 10° Mev-b
Factor of = 10 below present NACRE value

[posters on this topic!] m,[



S factor for 22Mg(p,y)>3Al

S factor dominated by direct capture upto T, = 0.2

23AI 24A| 0.7)
22Mg produced in ONe novae in X 2:
Ne-Na cycle = source of 22Na Mg | | Mg '
3.9s I1s
B decay or p capture dominate? 21La ZZLa v
23s 2.6yr
Use charge symmetry for ANC: £ t ¢
> 23A| *Ne *'Ne *Ne
b
st/z (23AI ) — st/z (23Ne) ds/» ( ) T

b, (*Ne)

5/2

B-decay of 23Al = gnd. state is 5/2*
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SR = (1L.223: 00210 T

S -factor [KeV b]
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Reaction Rate
(cm3/mole/s)

p=106 gm/icm?, T4=0.4
22Mg(p,y)?3Al competes with B* rate

but photodisintegration is issue




Charged Particle Capture:
the Trojan Horse Method I

 Many charged-particle reaction rates
Important in stellar evolution

e Laboratory measurements = Coulomb
barrier issues (e.g. electron screening)
making extrapolation difficult

« THM (Baur — 1986) uses surrogate to
remove Coulomb effects




THM - Example

SLi(°Li,o0)*He for

| | | °Li(d,o)*He
Consider a reaction °Li(d,@)*He <,

THM = use Li(5Li, x@)*He d}<m "
“Li o

spectator THM - Spitaleri et al.
Direct data Englster et al.
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Charged Particle Capture:
the Trojan Horse Method II

e |Ssues:
— transferred particle is off energy shell
— Initial and final state effects important
— no absolute normalization
— must have guasi-free kinematics
— analysis with PWIA and MPWIA



Some Reaction Mechanism Issues

Three calculations (spectator o ignored) as a function of A=(p,4)%/(lL,q)?
‘on shell’ transfer = A=0 (black)
‘half off shell’ with QF kinematics = A=m_ +m-m, ;= BE (red)
‘half off shell’ with = A= 1.5xBE (blue)
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Final state effects also not important!

[Mukhamedzhanov et al., nucl/th-0602001] A I M



THM Applications

* Direct Capture:
— extrapolation to S(0) without e-screening
— extraction of screening potential

 Resonant capture:
— extrapolation to S(0) with small uncertainty

e Subthreshold Capture:
— observe effects at very low relative energy
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Direct Capture

; direct
6Li + d — O+ O So: 16.9 MeV b " 6Li+d— o, + o ¢ data

E kA 33
Ue (Oir) 6L j+d ﬁ .

330 £ 120 eV

‘Li+p > o+ 0o 5)=55+3keVb
Ue (Dir‘) 7Li+p

300 + 160 eV : TLisp— o+ 0

éLi+p oa+3He so = 3 £ 0.9 MeVb

U, 0 6Lij+p

440 + 80 eV ‘ Li+p— a + 3He- Wbt

10
®Li—p relative energy [Mevl

From C.S.




Resonant Capture

The °Be(p,a)°Li reaction via 2H(°Be, aLi)n

A
0
>
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B THM

e Direct
data
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Laboratory: Tandem: LNS
INFN-Catania

Energy: E ¢, = 22 MeV

Reaction important for
depletion of light nuclei

From C.S.




The °N(p,a)!?C reaction via d(*°N,a!2C )n I

Present work Pl’e|lmlnary
Redder et al. (1982)
Zyskind et al. (1979)

Schardt et al. (1952)

(@)
~

S(E) (MeVb)

15N]

N
O
N

Destroys °’N = reduces
9F production in AGB
stars

Labor'aTor'y: 2H(15N,0c12C)n

TAMU (K500 cyclotron) E,...=60MeV

S(0) = 37 MeVb [about 1/2 NACRE value]

From C.S.




Summary

* Indirect techniques = valuable tools in N.A.

« Useful for range of reaction types
o S(0) with different extrapolation systematics

e Can provide auxiliary information

* Yield cross sections difficult to get otherwise!

Challenge for the future:
find new techniques to understand (n,y) rates
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Collaborators

« ANCs:
T. Al-Abdullah, A. Azhari, A. Banu, P. Bem, V. Burjan,
F. Carstoiu, C. Fu, C. Gagliardi, V. Kroha, J. Piskor, A.

Sattarov, E. Simeckova, G. Tabacaru, X. Tang, L.
Trache, J. Vincour, Y. Zhal, A. Mukhamedzhanov

e THM (TAMU experiment):
C. Spitaleri,S. Cherubini, V. Crucilla, M. La Cognata, L.
Lamia, R.G. Pizzone, S. Romano, A. Tumino
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