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Why use Indirect Techniques?

• Reaction rates on radioactive nuclei 
• Capture through subthreshold states
• Direct capture to add to resonant capture

• Screening and low-energy extrapolations

Get cross sections difficult for direct studies!
Including:



Some Indirect Techniques
[focus on reaction rates]

• Widths (γ and ‘p’) of resonance rates
- populate resonance state and measure decay

• Resonance energies – determine ER
• Coulomb dissociation
• Trojan Horse Method 

- unique way to understand screening

• Asymptotic Normalization  Coefficients 
- use with stable and radioactive beams

**
(T. Motobayashi)

**Experts in audience for detailed questions!

}resonant
capture



Radiative [p(α)] Capture with resonant
and subthreshold states: ANCs
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Radiative [p(α)] Capture with resonant
and subthreshold states: ANCs
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Radiative [p(α)] Capture with resonant
and subthreshold states: ANCs
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Measuring ANCs:
Transfer Reactions

Transition amplitude:
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ANC Examples:
capture at stellar energies

DC: 
• 7Be(p,γ)8B and 7Be + p ↔ 8B
• 22Mg(p,γ)23Al and 22Ne + n ↔ 23Ne
DC through subthreshold state:
• 14N(p,γ)15O and  14N + p ↔ 15O
• 13C(α,n)16O and  13C + α ↔ 17O (2 posters)
DC and resonance interference:
• 13N(p,γ)14O and  13N + p ↔ 14O



• S factor dominated by direct capture—our
published value via ANCs from two (7Be,8B) 
transfer reaction studies:

S(0) = 18.0 ± 1.9 eV⋅b

Result low by about 2 σ compared to most recent 
direct measurement (?)

Details about 7Be(p,γ)8B from C.D. in later talk

S factor for 7Be(p,γ)8B



CNO CyclesCNO Cycles
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S factor for 14N(p, γ)15O
some preliminary results

• C2(Ex=6.79 MeV) ≈ 27 fm-1 [non-resonant capture to this 
state  dominates S factor]

• S(0) ≈ 1.41 ± 0.24 keV·b for Ex=6.79 MeV
• Stot(0) ≈ 1.62 ± 0.25 keV·b
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• S factor dominated by direct capture to the
subthreshold state—our published value

S(0) = 1.62 ± 0.25 keV⋅b
reduces previous results by ≈ 2

• New direct measurements from LUNA (1.7±0.2) and 
LENA (1.68±0.09±0.16) in excellent agreement with this 

• Impacts stellar luminosity at transition period to red
giants and ages of globular clusters by about 1 Gyr

S factor for 14N(p,γ)15O
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Hot CNO 
(T9=0.2)
Hot CNO 
(T9=0.4)
Breakout 
Reactions

http://csep10.phys.utk.edu/guidry/NC-State-html/cno.html

Hot CNO Cycle and Hot CNO Cycle and 1313N(p,N(p,γγ))1414OO
PC1



Slide 13

PC1 After star runs out of pp chain fuel, CNO cycle would take over. When T9>0.1, the p capture rate on 13N could become of the same order or 
faster than its beta decay. As a result, hot CNO cycle will replace the normal CNO cycle to operate. So 13N(p,g)14O is a important reaction 
which determine the transition condition from CNO to hotCNO.
Preferred Customer, 1/15/2003



1414N(N(1313N,N,1414O)O)1313CC

⎟
⎟
⎟
⎟

⎠

⎞

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

DW
O

N

N

C

N

C

DW
O

N

N

C

N

C
O

N

bb

C

bb

C
C

2
11

2
11

2

2
11

2
11

2
11

2
31

2
11

2

2
11

2
31

2
31

2

2
11exp

14

13

14

13

14

13

14

13

14

13

14

13
14

13

σ

σσ

DWBA by FRESCO

(ANC for p)CN +→1314

C2 = 29.0 ± 4.3 fm-1
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S Factor for S Factor for 1313N(p,N(p,γγ))1414OO

• DC/Decrock_dc = 1.4

• Constructive/Decrock_tot
=1.4

• Constructive/Destructive 
=4.0 
( expected constructive 
interference for lower 
energy tail, useful to 
check)

For Gamow peak at T9=0.1,
Preliminary



Transition from CNO to HCNOTransition from CNO to HCNO

• 13N(p,γ)14O vs β decay

• 14N(p,γ)15O vs β decay

Crossover at T9 ≈ 0.2

For novae find that 
14N(p,γ)15O slower
than 13N(p,γ)14O;  
∴14N(p,γ)15O dictates
energy production 

XH=0.77



S factor dominated by subthreshold state (Ex=6.356 MeV)

S factor for 13C(α,n)16O
and s-process neutrons
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ANC from 6Li(13C,d)17O – sub Coulomb transfer
(recent result from Florida State University and TAMU, earlier result - Kubono)

ANC + Γn gives S(0) = 2.36 ± 0.52 × 106 Mev⋅b
Factor of ≈ 10 below present NACRE value

[posters on this topic!]



S factor dominated by direct capture  up to T9 ≈ 0.2

S factor for 22Mg(p,γ)23Al
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Charged Particle Capture:
the Trojan Horse Method I

• Many charged-particle reaction rates
important in stellar evolution

• Laboratory measurements ⇒ Coulomb
barrier issues (e.g. electron screening)
making extrapolation difficult 

• THM (Baur – 1986) uses surrogate to
remove Coulomb effects



THM - Example

Consider a reaction 6Li(d,α)4He
THM ⇒ use 6Li(6Li,αα)4He
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Charged Particle Capture:
the Trojan Horse Method II

• Issues:
– transferred particle is off energy shell
– initial and final state effects important
– no absolute normalization
– must have quasi-free kinematics
– analysis with PWIA and MPWIA



Some Reaction Mechanism Issues

Coulomb effects included

[Mukhamedzhanov et al., nucl/th-0602001]

Three calculations (spectator α ignored) as a function of Δ=(pαd)2/(μαd)2

‘on shell’ transfer ⇒ Δ=0 (black)
‘half off shell’ with QF kinematics ⇒ Δ=mα+md-mLi= BE (red)
‘half off shell’ with ⇒ Δ= 1.5×BE (blue)

6d Li α α+ → +

6Li + 6Li → α + α + α
for

Final state effects also not important!



THM Applications 

• Direct Capture:
– extrapolation to S(0) without e-screening
– extraction of screening potential

• Resonant capture:
– extrapolation to S(0) with small uncertainty

• Subthreshold Capture:
– observe effects at very low relative energy



330 ± 120 eV186 eV
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7Li + p → α + α   S0=55 ± 3 keV b

6Li + d → α + α  S0= 16.9 MeV b

6Li+p α+3He So = 3 ± 0.9 MeVb

6Li+d→ α + α

7Li+p→ α + α

6Li+p→ α + 3He

R-matrix calculation

direct  
data

From C.S.

Direct Capture



The 9Be(p,α)6Li reaction via 2H(9Be,α6Li)nThe 99Be(pBe(p,,αα))66Li Li reactionreaction via 22H(H(99BeBe,,αα66Li)nLi)n

Laboratory: Tandem: LNS

INFN-Catania

Energy:  E 9Be = 22 MeV

2H

p
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n

6Li

α

I

II
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Direct
data

Reaction important for 
depletion of light nuclei

From C.S.

Resonant Capture



The 15N(p,α)12C reaction via d(15N,α12C )nThe 15N(p,α)12C reaction via d(15N,α12C )n
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Destroys 15N ⇒ reduces 
19F production in AGB 
stars

From C.S.

Laboratory: 
TAMU (K500 cyclotron)

2H(15N,α12C)n
Ebeam = 60 MeV

S(0) ≈ 37 MeVb [about 1/2 NACRE value]

Preliminary



Summary

• Indirect techniques ⇒ valuable tools in N.A.

• Useful for range of reaction types
• S(0) with different extrapolation systematics

• Can provide auxiliary information

• Yield cross sections difficult to get otherwise!

Challenge for the future:
find new techniques to understand (n,γ) rates
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