Indirect Techniques (I): Asymptotic Normalization Coefficients and the Trojan Horse Method

NIC IX

R.E. Tribble, Texas A&M University June, 2006

Why use Indirect Techniques?

Get cross sections difficult for direct studies! Including:

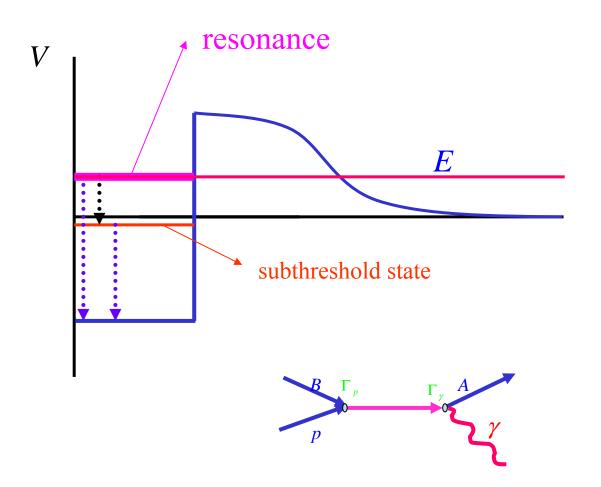
- Reaction rates on radioactive nuclei
- Capture through subthreshold states
- Direct capture to add to resonant capture
- Screening and low-energy extrapolations

Some Indirect Techniques [focus on reaction rates]

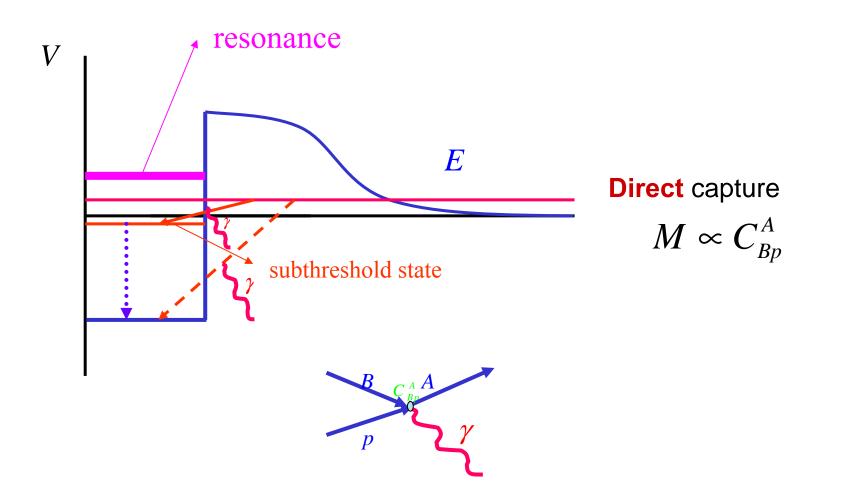
Widths (γ and 'p') of resonance rates

 populate resonance state and measure decay
 resonant capture

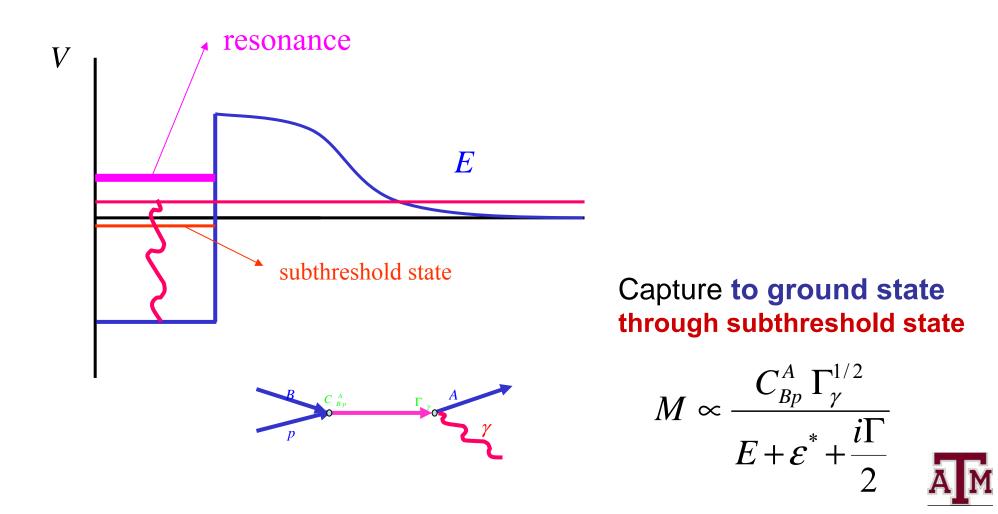
- **Resonance energies** determine E_R
- Coulomb dissociation (T. Motobayashi)
- Trojan Horse Method √**
 - unique way to understand screening
- Asymptotic Normalization Coefficients ✓
 - use with stable and radioactive beams


**Experts in audience for detailed questions!

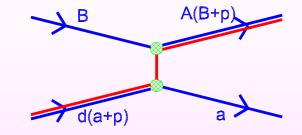
Radiative $[p(\alpha)]$ **Capture** with **resonant** and **subthreshold** states: **ANCs**


Capture through resonance

 $M \propto \frac{\Gamma_p^{1/2} \Gamma_\gamma^{1/2}}{E - E_0 + \frac{i\Gamma}{2}}$



Radiative $[p(\alpha)]$ **Capture** with **resonant** and **subthreshold** states: **ANCs**



Radiative $[p(\alpha)]$ **Capture** with **resonant** and **subthreshold** states: **ANCs**

Measuring ANCs: Transfer Reactions

Transition amplitude:

$$M = \sum \left\langle \chi_{f}^{(-)} I_{Bp}^{A} \middle| \Delta V \middle| I_{ap}^{d} \chi_{i}^{(+)} \right\rangle$$

Peripheral transfer:

$$I_{Bp}^{A} \approx C_{Bp}^{A} \frac{W_{-\eta_{A},l+\frac{1}{2}}(2\kappa_{Bp}r_{Bp})}{r_{Bp}}$$
$$\frac{d\sigma}{d\Omega} = (C_{Bpl_{A}j_{A}}^{A})^{2}(C_{apl_{d}j_{d}}^{d})^{2} \frac{\sigma_{l_{A}j_{A}l_{d}j_{d}}^{DW}}{b_{Bpl_{A}j_{A}}^{2}b_{apl_{d}j_{d}}^{2}}$$

$$[\mathbf{S} = \mathbf{C}^2 / \mathbf{b}^2]$$

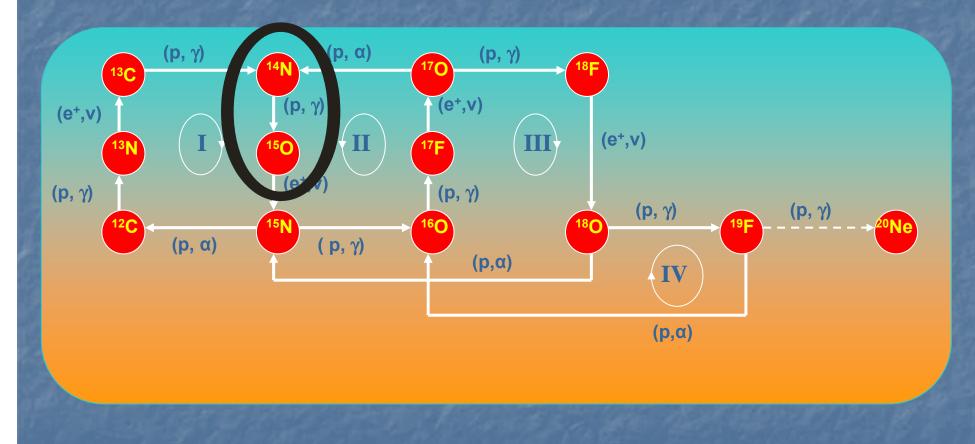
ANC Examples: capture at stellar energies

• ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B} \text{ and } {}^{7}\text{Be} + p \leftrightarrow {}^{8}\text{B}$

DC:

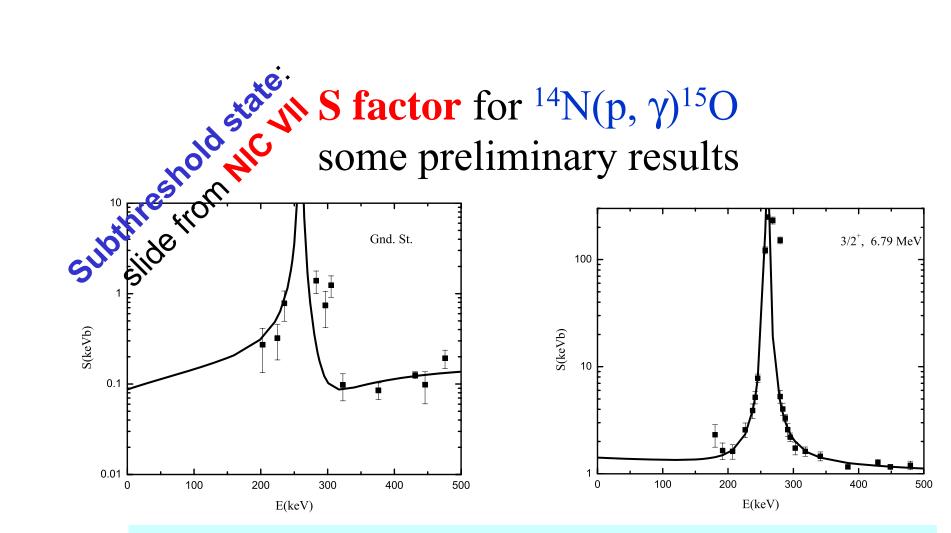
- ${}^{22}Mg(p,\gamma){}^{23}Al \text{ and } {}^{22}Ne + n \leftrightarrow {}^{23}Ne$ DC through subthreshold state:
- ${}^{14}N(p,\gamma){}^{15}O \text{ and } {}^{14}N + p \leftrightarrow {}^{15}O$
- ${}^{13}C(\alpha,n){}^{16}O$ and ${}^{13}C + \alpha \leftrightarrow {}^{17}O$ (2 posters) DC and resonance interference:
- ${}^{13}N(p,\gamma){}^{14}O \text{ and } {}^{13}N + p \leftrightarrow {}^{14}O$

S factor for $^{7}Be(p,\gamma)^{8}B$


 S factor dominated by direct capture—our published value via ANCs from two (⁷Be,⁸B) transfer reaction studies:

 $S(0) = 18.0 \pm 1.9 \text{ eV} \cdot \text{b}$

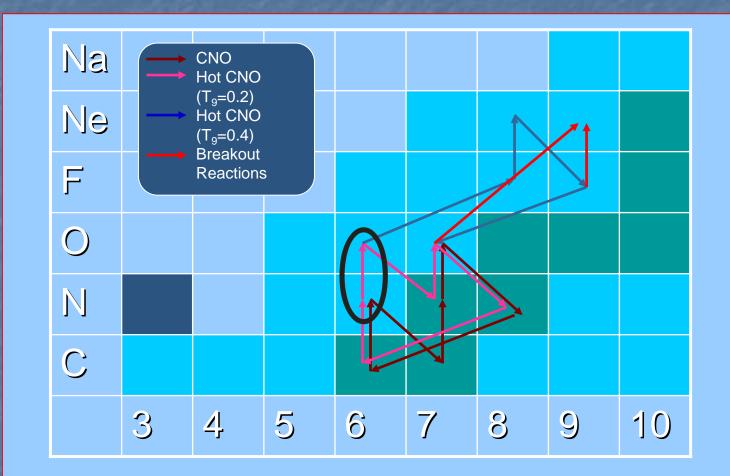
- Result low by about 2 σ compared to most recent direct measurement (?)
- > Details about ${}^{7}Be(p,\gamma){}^{8}B$ from C.D. in later talk



CNO Cycles

- $C^2(E_x=6.79 \text{ MeV}) \approx 27 \text{ fm}^{-1}$ [non-resonant capture to this state dominates S factor]
- $S(0) \approx 1.41 \pm 0.24 \text{ keV} \cdot \text{b}$ for $E_x = 6.79 \text{ MeV}$
- $S_{tot}(0) \approx 1.62 \pm 0.25 \text{ keV} \cdot b$

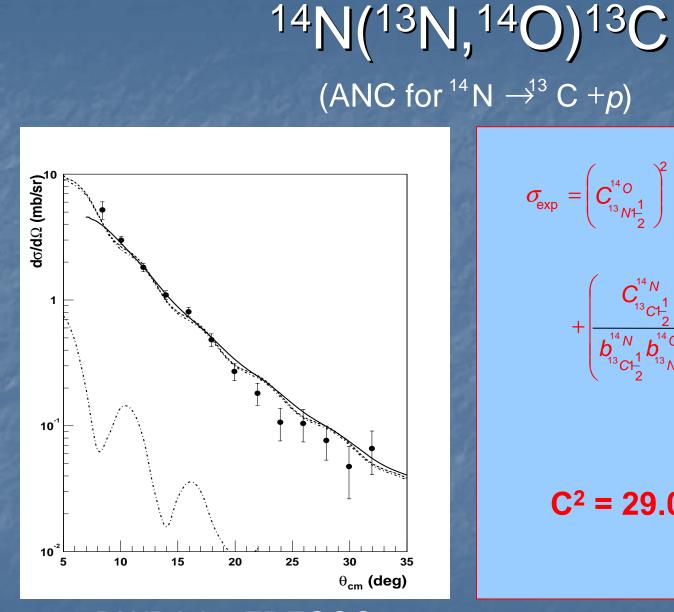
S factor for ${}^{14}N(p,\gamma){}^{15}O$

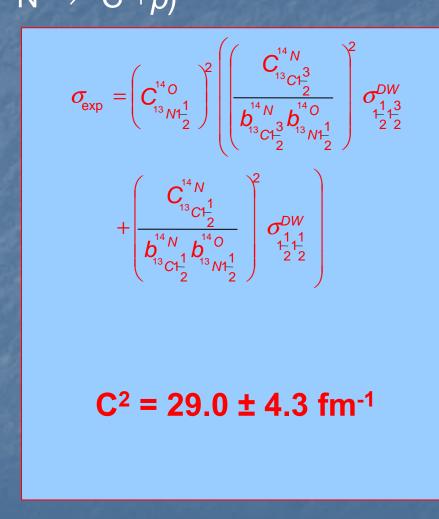

• **S** factor dominated by direct capture to the subthreshold state—our published value $S(0) = 1.62 \pm 0.25 \text{ keV} \cdot b$

reduces previous results by ≈ 2

- New direct measurements from LUNA (1.7±0.2) and LENA (1.68±0.09±0.16) in *excellent agreement* with this
- Impacts stellar luminosity at transition period to red giants and ages of globular clusters by about 1 Gyr

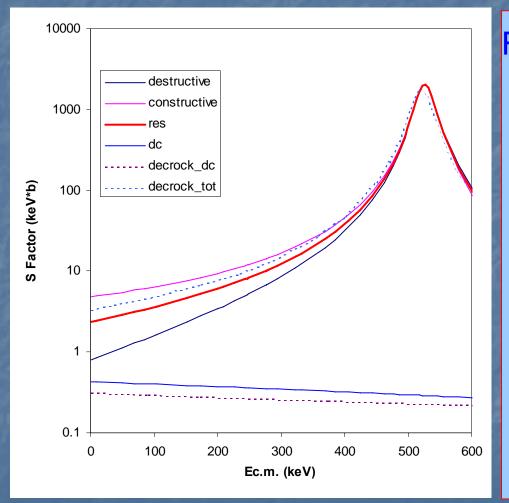
Hot CNO Cycle and $^{13}N(p,\gamma)^{14}O$




http://csep10.phys.utk.edu/guidry/NC-State-html/cno.html

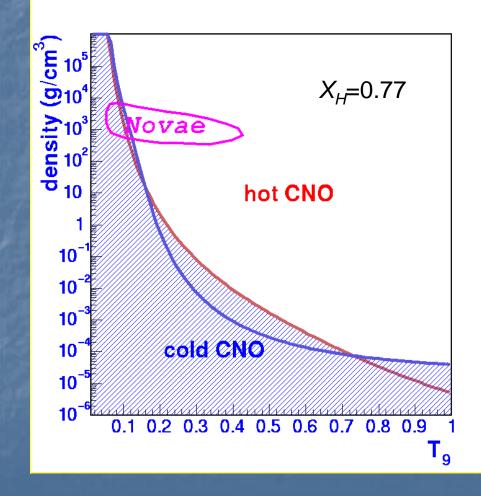
PC1

PC1 After star runs out of pp chain fuel, CNO cycle would take over. When T9>0.1, the p capture rate on 13N could become of the same order or faster than its beta decay. As a result, hot CNO cycle will replace the normal CNO cycle to operate. So 13N(p,g)14O is a important reaction which determine the transition condition from CNO to hotCNO. Preferred Customer, 1/15/2003



DWBA by FRESCO

S Factor for ${}^{13}N(p,\gamma){}^{14}O$

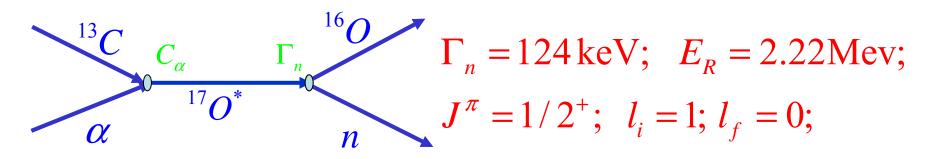

For Gamow peak at T₉=0.1,

- DC/Decrock_dc = 1.4
- Constructive/Decrock_tot =1.4
- Constructive/Destructive =4.0

 (expected constructive interference for lower energy tail, useful to check)

Transition from CNO to HCNO

Crossover at $T_9 \approx 0.2$


- ${}^{13}N(p,\gamma){}^{14}O \text{ vs }\beta \text{ decay}$
- ¹⁴N(p, γ)¹⁵O vs β decay

For novae find that ${}^{14}N(p,\gamma){}^{15}O$ slower than ${}^{13}N(p,\gamma){}^{14}O$; $\therefore {}^{14}N(p,\gamma){}^{15}O$ dictates energy production

S factor for ${}^{13}C(\alpha,n){}^{16}O$ and s-process neutrons

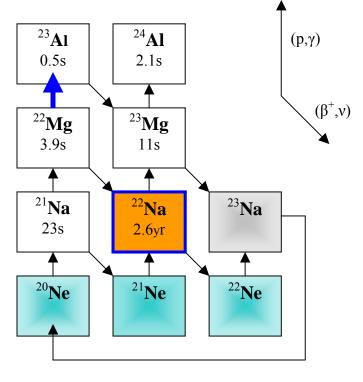
S factor dominated by subthreshold state (E_x=6.356 MeV)

ANC from ⁶Li(¹³C,d)¹⁷O – sub Coulomb transfer (recent result from Florida State University and TAMU, earlier result - Kubono)

ANC + Γ_n gives S(0) = 2.36 ± 0.52 × 10⁶ Mev·b Factor of \approx 10 below present NACRE value

[posters on this topic!]

S factor for ${}^{22}Mg(p,\gamma){}^{23}AI$

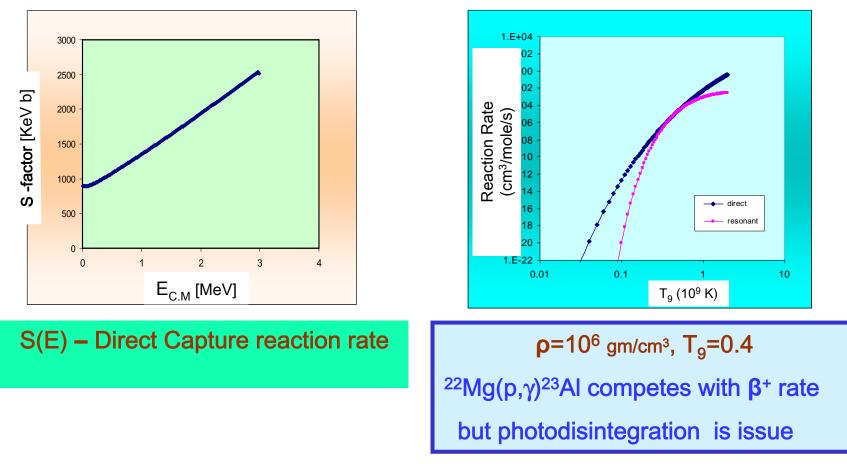

S factor dominated by direct capture up to $T_9 \approx 0.2$

²²Mg produced in ONe novae in Ne-Na cycle \Rightarrow source of ²²Na

β decay or p capture dominate?

Use charge symmetry for **ANC**:

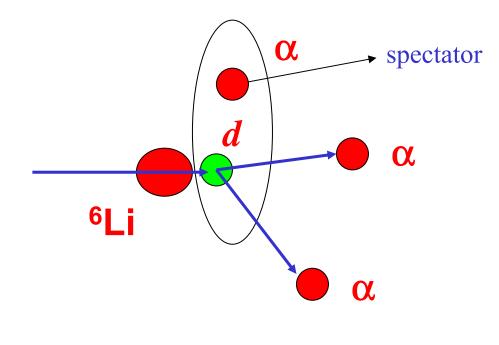
$$C_{d_{5/2}}^{2}({}^{23}Al) = C_{d_{5/2}}^{2}({}^{23}Ne) \frac{b_{d_{5/2}}^{2}({}^{23}Al)}{b_{d_{5/2}}^{2}({}^{23}Ne)}$$



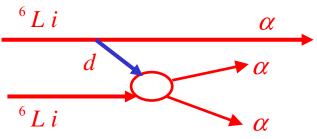
β-decay of ²³AI \Rightarrow gnd. state is 5/2⁺

²²Mg (p, γ)²³Al Reaction Rate

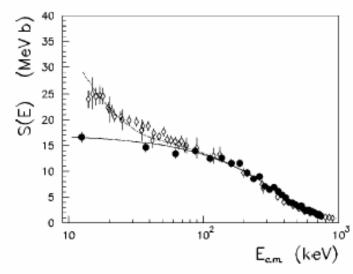
 $C^{2}(^{23}Al) = (1.22 \pm 0.12) * 10^{4} \, fm^{-1}$


Charged Particle Capture: the **Trojan Horse Method** I

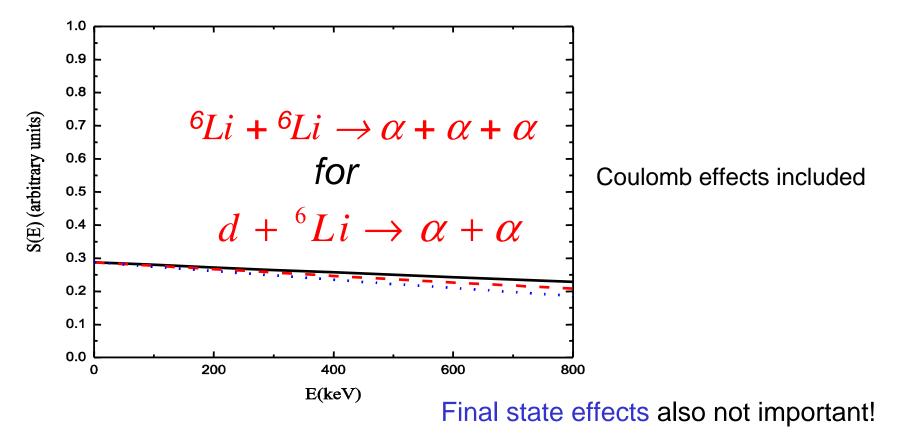
- <u>Many</u> charged-particle reaction rates important in stellar evolution
- Laboratory measurements ⇒ Coulomb barrier issues (e.g. electron screening) making extrapolation difficult
- THM (Baur 1986) uses surrogate to remove Coulomb effects



THM - Example


Consider a reaction ${}^{6}Li(d,\alpha){}^{4}He$ THM \Rightarrow use ${}^{6}Li({}^{6}Li,\alpha\alpha){}^{4}He$

⁶Li(⁶Li,αα)⁴He for ⁶Li(d,α)⁴He


Charged Particle Capture: the **Trojan Horse Method** II

- Issues:
 - transferred particle is off energy shell
 - initial and final state effects important
 - no absolute normalization
 - must have quasi-free kinematics
 - analysis with PWIA and MPWIA

Some Reaction Mechanism Issues

Three calculations (spectator α ignored) as a function of $\Delta = (p_{\alpha d})^2 / (\mu_{\alpha d})^2$ 'on shell' transfer $\Rightarrow \Delta = 0$ (black) 'half off shell' with QF kinematics $\Rightarrow \Delta = m_{\alpha} + m_{d} - m_{Li} = BE$ (red) 'half off shell' with $\Rightarrow \Delta = 1.5 \times BE$ (blue)

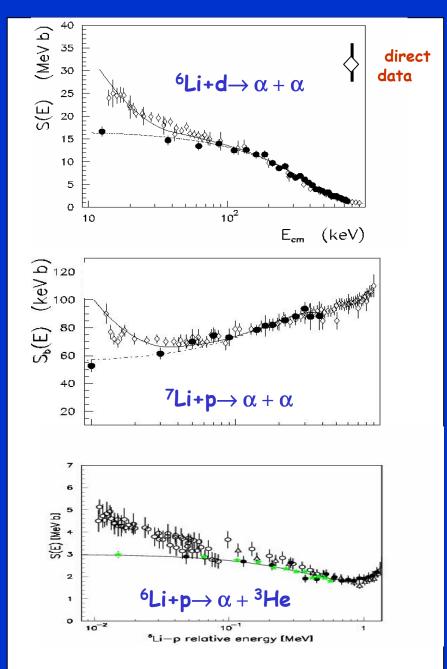
[Mukhamedzhanov et al., nucl/th-0602001]

THM Applications

- Direct Capture:
 - extrapolation to S(0) without e-screening
 - extraction of screening potential
- Resonant capture:
 - extrapolation to S(0) with small uncertainty
- Subthreshold Capture:
 - observe effects at very low relative energy

Direct Capture

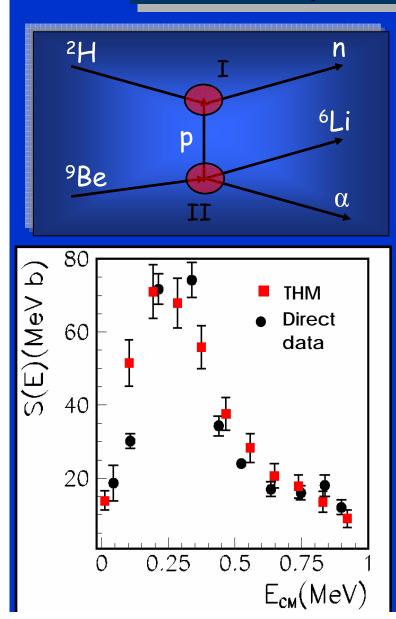
⁶Li + d
$$\rightarrow \alpha$$
 + α S₀= 16.9 MeV b


U _e (ad)	U _e ^(Dir) ⁶ Li+d
186 eV	330 ± 120 eV

⁷Li + p $\rightarrow \alpha$ + α S₀=55 ± 3 keV b

U _e (ad)	U _e (Dir) ⁷ Li+p
186 eV	$300 \pm 160 \text{ eV}$

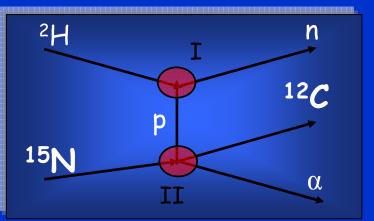
⁶Li+p α +³He so = 3 ± 0.9 MeVb


U_e (ad)	U _e ^(Dir) ⁶ Li+p
186 eV	440 ± 80 eV

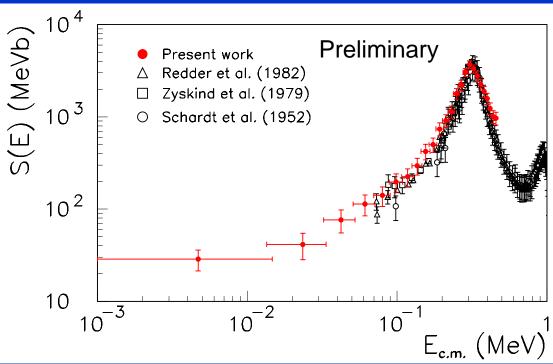
From C.S.

Resonant Capture

The ⁹Be(p, α)⁶Li reaction via ²H(⁹Be, α ⁶Li)n


Laboratory: Tandem: LNS INFN-Catania

Energy: E 9Be = 22 MeV


Reaction important for depletion of light nuclei

The ¹⁵N(p, α)¹²C reaction via d(¹⁵N, α ¹²C)n

Destroys ¹⁵N ⇒ reduces ¹⁹F production in AGB stars

Laboratory: TAMU (K500 cyclotron)

²H(¹⁵N,α¹²C)n E_{beam} = 60 MeV

S(0) ≈ 37 MeVb [about 1/2 NACRE value]

From C.S.

Summary

- Indirect techniques \Rightarrow valuable tools in N.A.
- Useful for range of reaction types
- S(0) with different extrapolation systematics
- Can provide auxiliary information
- Yield cross sections difficult to get otherwise!

Challenge for the future:

find new techniques to understand (n,γ) rates

Collaborators

• ANCs:

T. Al-Abdullah, A. Azhari, A. Banu, P. Bem, V. Burjan, F. Carstoiu, C. Fu, C. Gagliardi, V. Kroha, J. Piskor, A. Sattarov, E. Simeckova, G. Tabacaru, X. Tang, L. Trache, J. Vincour, Y. Zhai, A. Mukhamedzhanov

• **THM** (TAMU experiment):

C. Spitaleri, S. Cherubini, V. Crucilla, M. La Cognata, L. Lamia, R.G. Pizzone, S. Romano, A. Tumino

