Nucleosynthesis in neutrino-heated matter

Gabriel Martínez Pinedo

June 30, 2006

Proton-rich ejecta

• Are light p-nuclei synthesized in neutrino heated ejecta?

Neutron-rich ejecta: The role of fission

- Nuclear physics input and models
- Results

3 Conclusions

Proton-rich ejecta

• Are light p-nuclei synthesized in neutrino heated ejecta?

2 Neutron-rich ejecta: The role of fission

- Nuclear physics input and models
- Results

3 Conclusions

Proton-rich ejecta

• Are light p-nuclei synthesized in neutrino heated ejecta?

2 Neutron-rich ejecta: The role of fission

- Nuclear physics input and models
- Results

Are light p-nuclei synthesized in neutrino heated ejecta?

Proton-rich ejecta: The *vp*-process

- Proton-rich ejecta could be the major contributor of ⁴⁵Sc, ⁴⁹Ti and ⁶⁴Zn (Pruet *et al.* 2005, Fröhlich *et al.* 2006)
- Can proton-rich ejecta be the site of a kind of rp-process in supernovae?
- Problem with the short time scales for explosive nucleosynthesis in supernovae (~ seconds).
- Antineutrino absorption can speed up matter flow.

 $\bar{\nu}_e + p \rightarrow e^+ + n \text{ (time ~ seconds)}$

⁶⁵As **(**p,γ) S_n≈-74 keV ⁶⁴Ge β^+ 63.7 s ⁶⁴Ga Conclusions

Are light p-nuclei synthesized in neutrino heated ejecta?

Proton-rich ejecta: The *vp*-process

- Proton-rich ejecta could be the major contributor of ⁴⁵Sc, ⁴⁹Ti and ⁶⁴Zn (Pruet *et al.* 2005, Fröhlich *et al.* 2006)
- Can proton-rich ejecta be the site of a kind of rp-process in supernovae?
- Problem with the short time scales for explosive nucleosynthesis in supernovae (~ seconds).
- Antineutrino absorption can speed up matter flow.

$$\bar{\nu}_e + p \rightarrow e^+ + n \text{ (time ~ seconds)}$$

The *vp*-process C. Fröhlich, *et al.*, PRL **96**, 142502 (2006) Physical Review Focus (April 21).

Are light p-nuclei synthesized in neutrino heated ejecta?

Are light p-nuclei synthesized in neutrino heated ejecta?

Nucleosynthesis fluxes

Figure from Pruet et al, ApJ 644, 1028 (2006) [Poster ID: 180]

Production of $^{92}\rm{Mo}$ is sensitive to the masses (and proton capture rates) in the region of $^{92}\rm{Pd}.$

Are light p-nuclei synthesized in neutrino heated ejecta?

Composition in neutrino heated ejecta

- Early ejecta proton-rich: *vp*-process
- Later ejecta neutron rich: r-process.
- Nucleosynthesis sentsitive to proton to seed ratio (*vp*-process) and neutron to seed ratio (*r*-process).

Are light p-nuclei synthesized in neutrino heated ejecta?

Production of light p nuclei

S. Wanajo, astro-ph/0602488 (Poster ID: 105)

- ⁹²Mo is produced in slightly neutron rich ejecta, $Y_e \approx 0.47$ -0.49 (Fuller & Meyer 1995, Hoffman *et al.* 1996).
- The rest is produced in proton-rich ejecta.

Nuclear physics input and models Results

r-process and metal poor stars

J. Cowan, NIC-IX talk Cowan & Sneden, Nature **440**, 1151 (2006) r-process sites:

- High entropy neutrino-driven wind (Woosley *et al.* 1994, Takahashi *et al.* 1994).
- Low entropy, low Y_e ejecta:
 - Prompt explosion of ONeMg white dwarfs.
 Seems to be rule out by recent calculations (Kitaura, Janka and W. Hillebrandt 2006, Adam Burrows talk).
 - Neutron stars mergers (Freiburghaus, Rosswog, and Thielemann 1999).

Our calculations

- Adiabatic expansions (Freiburghaus *et al.* 1999). Expansion velocity 4500 km/s ($\tau = 50$ ms), $Y_e = 0.45$. We want to achieve large enough neutron to seed ratio to study the effect of fission in the r-process.
- Full nuclear network (p,n...Eu) before alpha-rich freeze-out.
- R-process code (D. Mocelj), $Z \le 110, A \le 340$.
- neutron-capture and neutron fission cross sections (I. Panov, T. Rauscher, F.-K. Thielemann)
- Beta-decay rates and beta-delayed fission (P. Möller, B. Pfeiffer, and K.-L. Kratz).
- neutrino absorption and neutrino induced fission (N. Zinner & K. Langanke)
- Fission yields for all processes (ABLA code, N. Zinner, A. Kelić, K.-H. Schmidt)

Where does fission occur?

Myers & Swiatecki Barriers

Nuclear physics input and models Results

Fission yields

Heavier nuclei tend to produce lighter fragments.

Nuclear physics input and models Results

Snapshot

Nuclear physics input and models Results

Comparison of abundances

Differences are due to different shell structure at N = 82

Some quantitative results

Percent of final abundance that has undergone fission.

n/s = 116	(n,fission)	β -fission	v-fission	Total
ETFSI-Q	0	0	0	0
FRDM	10	1	0	11
Duflo-Zuker	10	1	0	11
n/s = 186	(<i>n</i> ,fission)	β -fission	v-fission	Total
etfsi-q	33	5	0	38
FRDM	36	3	0	39
Duflo-Zuker	36	3	0	39
n/s = 417	(n,fission)	β -fission	v-fission	Total
etfsi-q	56	4	0	60
FRDM	58	5	0	63
Duflo-Zuker	58	5	0	63

NIC-IX Nucleosynthesis in neutrino-heated matter

Neutron-rich ejecta: The role of fission

Results

Abundances at freeze-out

R-process path and abundances at freeze out for n/s = 116. $T_9 = 0.6$, $N_n = 6.4 \times 10^{23}$ cm⁻³

Nucleosynthesis in neutrino-heated matter

270

Nuclear physics input and models Results

Role of half-lives at N=184

- Matter accumulated at $N = 184 (A \sim 270)$ will fission in the decay to "stability".
- During the decay will reach a region with large fission probabilities and fission will take place. Mainly neutron induced (chain reaction in atomic bomb).
- The released neutrons can produce mayor shifts in the $A \sim 195$ peak if the beta decay half-lives are too long. They are responsible for a kind of weak r (strong s) process with $N_n \sim 10^{16}$ cm⁻³. Sensitive to (n, γ) cross sections.

NIC-IX

Soft dipole strength in neutron-rich nuclei

Coulomb dissociation measurements by the LAND Collaboration (GSI) show an increase in E1 strength at low energies in neutron rich Sn isotopes. [P. Adrich *et al.*, PRL **95**, 132501 (2005)]

Nuclear physics input and models Results

Role of neutrinos

If we increase neutrino fluence there is no production of heavy r-process nuclei (α -effect, Fuller & Meyer 1995).

Nuclear physics input and models Results

Elemental abundances

NIC-IX

Nucleosynthesis in neutrino-heated matter

Nuclear physics input and models Results

Neutron stars mergers

Trajectory from Freiburghaus, Rosswog, and Thielemann 1999 ($Y_e = 0.1, n/s = 238$).

NIC-IX Nucleo

Nucleosynthesis in neutrino-heated matter

Conclusions

- A combination of proton-rich material (νp -process) and slightly neutron-rich material ($Y_e \sim 0.48$) could explain the solar abundances of light p-nuclei (92,94 Mo, 96,98 Ru).
- Fission plays a very important role in determining the final abundances and dynamics of the r-process.
- The strength of the N = 82 plays a very important role in determining the role of fission.
- Mass models with strong shell effects are able to produce a consistent and robust r-process patters as soon as the neutron to seed ratio is large enough to induce fissions.
- Neutrino-induced fission is irrelevant for the determination of the r-process abundances. Neutron-induced fission is the dominating channel.

Collaborators

۲

Proton-rich ejec	ta.		
C. Fröhlich (Ba	sel) F.	K. Thielemann (Basel)	M. Liebendörfer (Basel)
K. Langanke (G	iSI) N	I. T. Zinner (Århus)	R. Hix (Oak Ridge)
E. Bravo (Barce	lona)		

r-process nucleosynthesis.

D. Mocelj (Basel)F.-K. Thielemann (Basel)T. Rauscher (Basel)K. Langanke (GSI)A. Kelić (GSI)K.-H. Schmidt (GSI)N. T. Zinner (Århus)I. Panov (Moscow)P. Möller (Los Alamos)B. Pfeiffer (Mainz)K.-L. Kratz (Mainz)

N=184 Two-Neutron separation energies

N=82 and N=126 Two-Neutron separation energies

