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The features of na.« - system for astrophysical energies (< 1 MeV) have been investigated on the
basis of Faddeev’s equations within the framework of the study of resonance fusion possibility in
stellar matter [1]. Attention has been given to the determination and analysis of resonance states
of the system.

It was found that the series of resonance states appear in the naa system at very low energies
under certain conditions. The lifetimes of these three body resonances proved to be close to the
lifetime of unstable ground state of ®Be.

Simple forms of a¢- and na - potentials are taken in order to satisfy scattering data at very low
energies. The a-particles are considered as elementary.

It is shown that the effective long range interaction acting as well-known two body potential
2 can appear in this model of the nota system. It leads to resonance states in the system.
Thomas’s and Efimov’s effects in three body systems can be cited as typical examples of influence
of effective long range interaction [2]. Moreover, the resonance phenomena can take place in
systems composed of one neutron and three or more -particles within the low energy region.

~ 1

The sharp resonance in a system consisting of a neutron and few o-particles is considered as a
stimulus to resonance fusion, i.e. this can be a new mode of fusion. Furthermore, the resonance

fusion can give results in many astrophysical phenomena.
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It’s known that Coulomb forces lead to serious difficulties in a three-body problem, especially
at positive energies [3]. We follow by the popular method of screening of Coulomb forces. The
set of Faddeev’s equations can be represented as a mathematically strict statement of a three-body
problem where two-body forces have finite radii of acting [4].

1. Simple forms of two-body interactions.

As known, there are no stable nuclei consisting of 5 or 8 nucleons. At present a determina-
tion of effective potentials between a neutron and an o-particle or between two Q-particles is an
unsolvable few-body problem. However, it is possible to describe these two-body problems at very
low energies within the framework of simple potential models.

Interactions between two particles are chosen in the form of separable potentials:

AV=]v>A<y|, (1.1)

where a coupling constant A is a real quantity. Obviously the amplitude of scattering is expressed
in the following analytical form:

[k K52) =< k|fIK >, f=—|v>n(z) <V, (12)

where
Nl =A"1—A(Z), A=< V|Go(2)|v >, (1.3)

Go(Z) = (Z— Hp)™!, in physical limit Z — E 4 i-0,. Hereinafter indexes of states, recoupling
coefficients, etc. are omitted for simplicity of notes. Formalism and details of two- and three-body
scattering theory can be found, for instance, in [5].

It’s suitable to normalize A(0) = —1. For S-wave, for example, the values A < —1 correspond
to the area of bound states, —1 < A < 0 to virtual states and A > 0 to quasi stationary ones. In
the last case the amplitude has poles in k-complex plane in points of k = kgoy = £kg + ik;, where
ERes = k&, /21, Eg = (ki —k3)/2u, T = —dkgk; /21, 1 - the reduced mass and k; < 0.

To describe na-scattering at low energies, E < 10MeV , it’s enough to take into account S- and
P-wave potentials only. In S-wave the na effective potential is characterized by repulsive force.
Attractive forces act already in P-waves and give resonances in partial amplitudes although they
have higher energies and typical lifetimes for nuclear interactions [6].

For S-wave the no-potential is chosen in the form of (1.1) with form-factor v(k) =< v|k >=
Const/(1+x?), where Const = /8% /(2u), x = k/B and B is the inverse radius of S-wave nuclear
force. Here the nuclear coupling constant A = x4 = (kg/B)? > 1, i.e. the amplitude is almost
unvaried at low energies, where x << 1. So, the parameters fixed by experimental na scattering data
are equal to: B =0.751fm~! and A = 14.94. In turn they give the resonance energy and width
such as: Er ~ T ~ 200 M¢eV.

For P-waves (J = 3/2,1/2) the no-potentials may also be chosen in the form of (1.1) but with
form-factors v(k) = Const - x/(1+x?). For example, for J = 3/2 the parameters 8 = 1.175fm~!
and A = —0.97 that correspond to Eg ~ 0.9MeV and I ~ 0.6MeV can be easily obtained [7].

A system of two a-particles has the very sharp resonance at very low positive energy. The
resonance can be described by the sum of nuclear potential (1) and Coulomb potential - U.
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Besides Coulomb scattering of charged nuclear particles, the Coulomb forces lead to modifi-
cation of their nuclear transition matrixes [3]. In our case the pole of amplitude will correspond to
nC_I(Em.) =0, where

et =41 —A%2), AC=<VC|Gy(2)|v¢ >=<V|Gc(2)|v >, (1.4)

and G¢(Z) = (Z—Hy—U)™!. As A7! = AC(E,) and the nuclear coupling constant A is inde-
pendent of Coulomb forces, AC(EM) must be constant too. It means that position of resonance
point E, has to be changed if the quantity of A®(Z) is varied with increasing of Coulomb coupling
constant.

Coulomb shifts for nuclear parameters can be small or large depending on the energy of res-
onance and the dimensionless constant {. For two a-particles { = ag- 3, where ag ~ 3.6fm™" -
Bohr radius of system. Using these parameters and the ratio of |k;/kg| = 1.85- 1072, it is possible
to determine the nuclear parameters A and 3 [7].

Calculations give two sets of parameters: with A > 0 and A < —1. The case of attractive force
is espesially interesting because it gives nuclear parameters close to typical nuclear characteristics:
B =0.6385fm~! and A = —3.2389.

2. Resonances of no o system

Following Faddeev’s equations and omitting mathematical details and intermediate expres-
sions we can write down the resulting equation for transition matrix between the selected channels.
In our case these channels correspond to the same n(o@)-state which contains a free neutron and a
pair of interacting o-particles.

As usual, we introduce indices to mark three-body values with a sort of particle that first
outgoing area of interactions for asymptotic, and two-body values with a sort of third particle
that is absent in the pair. Total potential of our model is equal to the sum of two-body potentials
V=YV, wherei=n,o,a.

It’s convenient to separate the pole part of the two-body a¢’ t-matrix. Similar methods are
widely used in three-body problems to extract the main characteristics of considering processes.
The rest, i.e. a nonpole part of oo’ t-matrix, is considered as a correction member. Its contribution
is calculated with ordinary perturbation theory.

The equation for three-body amplitude f, ,» with accuracy up to a member and a factor which
have no influence on the pole features can be written in the following form:

0
fn n = n n’ Z nn nC n'! fn”m’ : 2.1

Here the effective potential corresponds to a triangle diagram where 7, (t-matrix of no’-subsystem)
is situated at the top of the diagram:

Vo = Z< €|Go(2) tq Go(2)|VG > . (2.2)

Coulomb forces can be taken into account to accurately obtain the modified ccox nuclear form-factor
which is written as v¢. All corrections for f,? ,» can be calculated by ordinary perturbation theory.
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Figure 1: Real part of ff,{n calculated with permanent step between points & 50 eV or more.

It should be noted that the resonance behavior of 1n¢ leads to irregularities of the kernel of
the integral equation (2.1). These irregularities within a certain region can be compensated by

oscillatory behavior of 0 , i.e. oscillations of solutions (2.1) near this region. Physically these

nn'?

oscillations represent themselves as resonances of a three-body system. In correction member
irregularities do not already exist.

In coordinate space the Shredinger equation corresponding to (2.1) contains the potential ~
y/r? in the region of irregularities (r - distance between neutron and @ o-subsystem). As known
this potential leads to oscillatory solutions if dimensionless constant y > 1/4 [2].

For effective potential (2.2), the integration on intermediate states smooths out singularities of
Green functions and gives a regular result. It is happened even in the case of positive energies in a
three-body system.

The effective potential (2.2) has been calculated numerically with definite relative accuracy ~
10~* under the fixed x, and x/,. The set of points x, is determined by a special auxiliary subprogram
at every step of energy E. The number of points depends on the determination accuracy. The
density of points is larger near of irregularities of kernel of integral equation (2.1).

The Faddeev’s equations give solutions for amplitudes which are much more regular than the
kernels of these equations. The method of point set determination is the same one which is used to
calculate the resonance levels of three-body problem at £ < 0 [2].

3. Results and conclusions

The nova resonances are located in the region surrounded by the aa-resonance point (Fig. 1).
It is important that the widths of the resonances can be proved to be smaller than the width of the
ao-resonance (Fig. 2). As the energy of the o subsystem is only part of energy of naa system,
the a-particles of stellar matter can be involved with nuclear synthesis at lower temperatures than
in the absence of neutrons. For instance, Fig. 1 and 2 show the curves calculated at energy of the
oo subsystem Eq = 50keV .

This situation becomes more interesting if the results from atomic physics will be taken into
account where the long range interactions in four particle systems lead to numbers of resonances
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Figure 2: Real part of f,?m calculated with permanent step between points = 0.05 eV'.

then in three-body systems [8]. Moreover, the system of three a-particles has a sharp resonance at
low energy [6]. So, the systems consisted of one neutron and few a-particles can have a very rich
spectrum with sharp resonances at low energy region.

As a result, light nuclei can be produced during fusion via few-body resonance states with
mass several times heavier than a-particle mass. Neutrons can be involved into nuclear few-body
synthesis or can be thrown out with high energy. Then the neutron can form the long lifetime
resonance again and stimulate the nuclear synthesis. Such mechanism of neutron catalysis is similar
to well-known pi-catalysis via udt-molecules.

Free neutrons in stellar matter can appear as a result of nuclear reactions, in particular, reac-
tions of proton cycle. It is suggested that there is helium core inside of star. The above few-body
resonance fusion takes place on the boundary area of the core.
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