Heavy Ion Program@LHC
ALICE View

- Summary
- ALICE constraints
- Heavy Ions (Pb-Pb)
- pp and pA
- Light Ions
- Options

See internal note ALICE-INT-2001-10 V2.0
Summary

● **initial 4-5 years**
 - regular pp running at $\sqrt{s} = 14$ TeV
 - 2 - 3 years Pb-Pb
 - 1 year p - Pb ‘like’ (p, d or α beams)
 - 1 year light ions (eg Ar-Ar)

(1HI ‘year’ = 10^6 effective s)
L $\sim 10^{29}$ and $< 3 \times 10^{30}$ cm$^{-2}$s$^{-1}$
L $\sim 10^{27}$ cm$^{-2}$s$^{-1}$
L $\sim 10^{29}$ cm$^{-2}$s$^{-1}$
L \sim few 10^{27} to 10^{29} cm$^{-2}$s$^{-1}$

● **other options**, depending on physics priorities & results
 - pp collisions at $\sqrt{s} = 5.5$ TeV/n
 - short energy scan of interest also to pp expts? (connect to Tevatron?)
 - lower energy Pb-Pb

 - possibly further high energy Pb-Pb
 - possibly another light system (out of O-O, Kr-Kr, Ar-Ar, Sn-Sn)
 - possibly another pA system
ALICE constraints

- **Luminosity with Ions (light or heavy)**
 - pile-up in TPC => MinBias rate < 8 kHz
 - Pb-Pb: L < 10^{27}
 - Ar-Ar: L < 3 \times 10^{27}
 - p-p: L < 10^{29}
 - muon spectrometer ‘stand-alone’: RPC limit ~ 50-100 Hz/cm²
 - considered for high statistics runs with light ions (Y suppression)
 - ‘soft’ limit, depends on RPC properties (trying to improve)
 - machine background (in particular pp) a major concern!
 - Pb-Pb: L < few 10^{28}
 - Ar-Ar: L ~ 10^{29}
 - p-p: L < 5 \times 10^{31}

- **Luminosity pp, p-A ‘like’**
 - no pile-up (clean events, low data volume) => MinBias rate < 8 kHz
 - untriggered MB events, large rate (kHz)
 - pile-up TPC < 20 events, no pile-up in SDD => MinBias rate < 200 kHz
 - triggered rare events, small rate (Hz)
 - pp: L < 3 \times 10^{30}
 - d-Ar: L < 2 \times 10^{29}
 - d-Pb: L < 8 \times 10^{28}

- **DAQ limits: BW = 1.25 Gbyte/s to storage**
 - Pb: 20 Hz MB, 20 Hz central+rare triggers, ~ 1 kHz muon arm
 - pp, d-A: ~ 1 kHz (limited by R/O time, TPC gating)

28/6/2002 HI beams J. Schukraft
H.I. Event samples

- **global event properties (large x-sections, soft processes)**
 - trigger on MB and central (~ 5% of total x-section)
 - data sample **limited by DAQ** capability for MB rate > 400 Hz
 - Pb-Pb: L > 5 x 10^{25} (5% of design L)
 - one reason for large DAQ bandwidth of ALICE
 - 1 ‘effective day’ (10^5 s) = 2x10^6 evts @ 20 Hz

- **semi-rare, but untriggerable events**
 - eg Ω, heavy quark mesons (D, B) hadr. & semi-leptonic decays,
 - trigger would need full, good online reconstruction to be selective
 - rate for inclusive hadrons/leptons of relevant p_t >> 1/event!
 - needs **large statistics** of MB/central events (few 10^7 evts)

- **rare triggered events**
 - lepton pairs (e, μ), high p_t particles, jets > 100 GeV
 - need **max Luminosity**, not limited by DAQ (‘high priority’ scheme)
Base Program I

- **start with heaviest ion, max. Energy**
 - Pb-Pb at 5.5 TeV/A

 - **Step 1:** ~ day even at very low initial Luminosity
 - few 10^3 - 10^5 events => global event properties

 - **Step 2:** ~ week, still below design Lum.
 - some 10^6 events => most of hadronic signals

 - **Step 3:** ~ month (> 10^6 effective s), max Lum.
 - Integrated luminosity => rare hard signals
Statistics needed in Ion Program

- **Minimum**: 6366 MB (382 central) events
 - few seconds at 1% design L

- **RHIC in 2000**
 - first collisions June 12, first PRL subm. July 19
 - 2nd: Aug 24, 22k MB events
 - ~3 weeks run, very low L, >10 PRL’s within <1 year
 - RHIC was commissioned with HI!

- **SPS in 1986**
 - first spectrum 1 week **before** start of HI run!
Hadronic observables

*STAR, \(\sim 10^6 \) central events (Oct. 2000 conf)
 - most global properties & hadronic observables
 - (particle ratios & spectra, HBT, flow, ...): Thermodynamics & Hydrodynamics

*Some \(10^7 \) evts needed for full hadronic physics
 - \(p_t \) spectra > 5-10 GeV
 - \(\Omega \), charm, beauty, ...

\[D^0 \rightarrow \pi K \]

\(K^0_S \)

\(\phi \)

\(\Omega \)

\(\bar{K}^* \)

Long way from “peaks” to final spectra and ratios but the signal strength is sufficient in all cases.
Rare Hard signals

- need max Lum, max time

B -> J/Ψ -> e+e-
 (sec. vertex)
- b x-section,
- b energy loss
- J/Ψ suppression

- expected statistics
 - extrapolation to central (10%) PbPb with $A^2 / 4$
 - no suppression/enhancement
 - includes all efficiencies and analysis cuts
 - $L = 5 \cdot 10^{20}$ cm$^{-2}$s$^{-1}$, 108 s running time, 1 σ mass cut

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>S/B</th>
<th>S/√S+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/Ψ</td>
<td>230000</td>
<td>0.72</td>
<td>310</td>
</tr>
<tr>
<td>Ψ'</td>
<td>4600</td>
<td>0.03</td>
<td>12</td>
</tr>
<tr>
<td>Υ</td>
<td>1800</td>
<td>7.10</td>
<td>39</td>
</tr>
<tr>
<td>Υ'</td>
<td>540</td>
<td>2.50</td>
<td>19</td>
</tr>
<tr>
<td>Υ''</td>
<td>260</td>
<td>1.50</td>
<td>12</td>
</tr>
</tbody>
</table>

- correlated bottom measurements

with $p_t^B > 3$ GeV/c, large relative yield of dimuons from bottom decay all over invariant mass

P. Crochet for the ALICE collaboration

LHCC2001, Nov. Oct.01
Need for pp & pA collisions at LHC

- **QGP analysis: study changes to signals**
 - measure same signal pp -> pA -> AA
 - same program at AGS, SPS, RHIC

- **baseline: pp reactions**
 - comparison running with pp to measure basic x-sections
 - very few results make NO reference to pp
 - pp essential part of base program. Needed to analyse AA data!

- **‘trivial’ nuclear modifications: pA**
 - initial state structure functions (shadowing)
 - large but unknown gluon shadowing at LHC
 - factor two or more uncertainty in pQCD x-sections
 - final state interaction in cold nuclear matter (quarkonia, jets, p_t distributions,..)
 - big effects, directly relevant for extracting QGP related modifications
 - pA essential part of base program. Needed to analyse AA data!
 - even more than at SPS (more shadowing, more emphasis on hard probes !)

- **number of genuine physics topics in pp, pA**
 - parton saturation, double parton scattering, diffraction, ...(not further discussed)
Example: pt Spectra

- **measure $p_t(AA)/p_t(pp)$**
 - low/med p_t: thermo- & hydrodynamics
 - at high p_t sensitive to ‘jet-quenching’
 - needs pp data to compare

- **complication: Cronin effect**
 - final state parton scattering
 - depends on A, sqrt(s)
 - needs pA data at LHC

STAR

- **Binary Collisions Scaling**
- **Wounded Nucleon Scaling**

CERN - SPS

- **$E_{lab}=158$ AGeV Pb+Pb**
- 10% central (WA98)
- 5% central (NA49)
- 10% central (WA44)
- 5% central Pb+Au (CERES)

soft/hard transition?

28/6/2002 HI beams J. Schukraft
Example: Lepton Pairs

- **get confidence in simulation of ‘normal’ behavior**
 - need pp and/or pA data in same detector, same analysis

CERES/NA45 Pb-Au 40 AGeV

\[\langle dN_{\text{ee}} / d\eta \rangle / \langle dN_{\text{ch}} \rangle \ (100 \text{ MeV}/c)^2 \]

\[\alpha_0 = 30\% \]

\[\langle dN_{\text{ch}} / d\eta \rangle = 210 \]

\[2.1 < \eta < 2.65 \]

\[p_T > 200 \text{ MeV}/c \]

\[\Theta_{\text{sep}} > 35 \text{ mrad} \]

No enhancement in pp and pA collisions

CERES p-Au 450 GeV

\[2.1 < \eta < 2.65 \]

\[p_T > 50 \text{ MeV}/c \]

\[\Theta_{\text{sep}} > 35 \text{ mrad} \]

\[\langle dN_{\text{ee}} / d\eta \rangle = 7.0 \]

28/6/2002 HI beams J. Schukraft
Example: Strangeness

- Enhancement compared to pp and pA

\[
\lambda_s = \frac{2\langle s\bar{s}\rangle}{\langle u\bar{u}\rangle + \langle d\bar{d}\rangle}
\]

Factor \(\sim 2\)

![Graph showing particle yield vs. \(<N_{\text{wound}}>\) for pBe, pPb, and PbPb collisions.](image)
Gluon Structure Functions

Hard processes ~ (#partons)²
unknown structure functions major reason for e.g. uncertainty in dN/dy

Initial ratios $R_i^A(x)$ for evolution.

EKS98 is the one with more constraints from data.
(new HIJING gluons ruled out by data in the LT, LO DGLAP).

Green: Sea quarks
Blue: gluons
Red: Valence quarks

GRV94, MRST p structure functions

Shadowing parameterizations

28/6/2002 HI beams J. Schukraft
Final State Interactions in Nuclei

- needs to be (re) measured at LHC for J/Psi, Y, jets, ...

- pA was essential to establish:
 - ‘normal’ suppression up to S-U
 - ‘abnormal’ suppression in Pb-Pb
Base Program II

- **detector commissioning and start-up with pp**
 - few months at LHC start-up, to get detector in shape & understood
 - few weeks before each ion run, even if no pp data is needed (after few years)
 - SPS praxis, to not waste the short HI run after longer shut-down

- **comparison running pp, ‘p’A**
 - $\sigma(AA) \sim A \sigma(pp) - A^{4/3} \sigma(pp)$ (1 central AA event $\sim 200 - 1000$ pp events)
 - statistics untriggered: few 10^9 events (error comparable to few 10^6 AA events)
 - needs few 10^6 s @ up to 1 kHz to tape
 - preferably ‘clean’ events ($L < 10^{29}$), only 0.3 Pbyte (versus 1.2 Pbyte with pile-up)
 at few 10^{30} > 90% of hits are from pile-up!
 - statistics triggered events (eg Y, jets..)
 - few months as well, see below

- **‘default’ scenario: ~ 5 years pp, 1 month ‘p’A**
 - pp running probably more defined by practical considerations
 - change of detector over time, **new physics questions** to be answered, ..
 - **in practice:** full running in early years, shorter runs later
Luminosity Requirements

Rate Limited (200 kHz)

Life Time Limited (1h)

Source Limited
Nucleon Luminosity
pp comparison data: ~ 1 year needed for statistics

- split between high and low Luminosity
- pp error < Pb-Pb, ~ comparable to high Lumi Ar-Ar

\[
\frac{R_{ij}}{R_{ij}^{\text{PbPb}}} \times 10 \text{ (running time)}
\]
pA versus dA

- **advantage of deuteron beams**
 - center of mass energy closer to AA cms
 - d-Pb: 6.4 TeV, p-Pb: 8.8 TeV
 - d-Ar: 7 TeV, p-Ar: 9.9 TeV
 - shift of midrapidity smaller
 - d-Pb: 0.12, p-Pb: 0.46
 - d-Ar: 0, p-Ar: 0.35
 - factor 2 larger cross section for hard processes!
 - isospin similar to nuclei (less important at LHC, only for large x_F)

- **pA versus dA still being discussed**
 - larger x_F-range for PDF’s (pA, Ap)?
 - problems with multiple parton scatterings?

- **Luminosity for 200 kHz interaction rate**
 - d-Pb: 7×10^{28} cm$^{-2}$ s$^{-1}$
 - d-Ar: 2×10^{29} cm$^{-2}$ s$^{-1}$
energy density dependence

- scale parameter(s) of QGP physics
 - ε, T_c, parton density, volume, impact parameter, # of participants..
 - all related via nuclear geometry (‘Glauber’ calculation)
- investigate quantitative (smooth) and qualitative (thresholds) variations

mostly done via impact parameter variation

special cases need light ions instead

- very peripheral:
 - difficult experimentally (background)
 - low statistics for hard processes
 - ‘diffuse’ geometry (colliding nuclear tails)
- scale parameter for specific structures (if present)
 - eg NA60 experiment (J/Psi threshold behaviour)

Luminosity (light) versus energy density (heavy) ???

- good statistics Y', Y'' only possible with light ions !!

choice of light ions:

- ‘light’ (eg Ar) for lowest energy density, but choice might change after first runs!
- 20Ar split into low (8 kHz, TPC) and high (200 kHz, muons) Lumi run
Energy Density
Examples

- **Strangeness**
 - low statistics at large b

- **J/Psi suppression**
 - low statistics, large systematics at large b
 - crucial region to establish ‘threshold’

- **Lepton pair continuum**
 - connect to pp via S-U
Origin of Charmonium Suppression

- A measurement of charmonia melting in a lighter collision system will confirm or rule out specific deconfinement models.

- A specific prediction: the J/ψ suppression pattern in In-In collisions exhibits a break at an impact parameter ~ 3.5 fm (M. Nardi & H. Satz)
Light ions are the best (only ?) way to scan low energy densities (around the phase transition)
Options: Energy scan

● **pp at 5.5 TeV**
 ➞ *interpolation* Tevatron - top LHC should be **rather reliable**
 ➞ done at RHIC, adds some (but not major) systematic error
 ➞ currently looks not very urgent, but I might be wrong...
 ➞ eventually, **some energy scan will be done** in any case at LHC
 ➞ was done at SppS, Tevatron

● **Ions at lower energy**
 ➞ connect to RHIC results ?
 ➞ strong case only if some drastic changes between RHIC and peripheral LHC
Beam Conditions

- **pp**
 - really low Lumi for MB events (few months), because of:
 - **data quality** (no pile-up)
 - **data volume**, offline CPU, already ‘promised’ to LCG project!
 - ~ stable conditions at both 10^{29} and few 10^{30}
 - displaced beams, highest possible β^*
 - acceptable **background** (beam gas)
 - data quality, data volume, RPC limit!
 - currently under investigation...

- **Pb-Pb**
 - max integrated **luminosity**
 - stable rate during spill as far as possible
 - space charge effects in TPC
 - both is very much helped by β^* **tuning**
 - better also for >1 experiment
 (quench limit in machine)