
GridFS
An Interface to Grid Replica Location

and File Storage Services
András Nagy

Andras.Nagy@cern.ch

2002-08-29

GridFS – p.1/14



Goals

Enable any application to access “files in the Grid”
efficiently.

• Any application. Make Grid resources accessible
as regular files in the Unix file system; no changes
to existing programs will be required.

• Files in the Grid. Combine optimized replica
location and file access services, so that
specifying a single logical file name would
automagically locate the nearest replica and
access that transparently.

• Efficiently. Do not download the whole file if only a
small fraction of it is accessed.

GridFS – p.2/14



Mechanism

User space virtual file system:

• Plug a module into the Linux kernel which forwards
relevant system calls (open, read, etc) to a user
space daemon which handles them.

• As the daemon runs in user space, it can use the
various shared libraries for replica location and file
access, which provide the required funcionality.

GridFS – p.3/14



What about SlashGrid?

Yes, this is the same idea. Unfortunately, SlashGrid

uses the Coda kernel module, which does not allow

partial access to files. (Recall the last requirement on

slide Goals.) This problem is currently being worked

around in SlashGrid, however, I don’t believe that the

proposed solution is feasible.

GridFS – p.4/14



What about Condor’s Pluggable File
System?

Condor’s PFS is a preloaded shared library. As such, it

is tied to a specific version of glibc, and even worse, for

full funcionality, glibc must be patched. Furthermore,

by it’s nature, it does not work with statically linked pro-

grams or programs linked to an older version of libc. As

our goal is to support any application, including legacy

ones, which cannot be recompiled for whatever reason,

this approach is not feasible.

GridFS – p.5/14



Prototype implementation

In the prototype, the following compontents are being
used:

• Kernel module: UVFS by Britt Park.
• Optimized replica location service: Reptor from

EDG WP2.
• File access service: Globus FTP Client from

Globus.

As the daemon is designed with abstraction in mind,

further services (plugins) should be easy to add.

GridFS – p.6/14



GridFS daemon

Job

Unix process

Linux kernel

VFS layer

Ext2 NFS UVFS

Disk Network

...

open("/grid/lfn/my_logical_file")

Kernel space User space

«plugin»
GSI FTP

«plugin»
Reptor

Dispatcher

lfn/ -> Reptor
gsiftp/ -> GSI FTP

«library»
Reptor

«library»
Globus FTP Client

getBestFile
("my_logical_file")

best file is
"gsiftp://testbed008/

my_physical_file"

/grid/lfn/my_logical_file
is a symbolic link to

/grid/gsiftp/testbed008/
my_physical_file

exists,
partial_read,

etc

data,etc

lookup

Plugins and libraries
for various other
location and storage
services

The Big GridFS Picture



Current status: Core

Done in general, cosmetics needed. Noteworthy
points:

• Kernel module. Various tweaks were needed to
make it suitable for our situtaion. This took more
time than I expected, as I had to understand
almost every bits and pieces of UVFS and the
Linux VFS layer, while documentation on both of
them was rather weak.

GridFS – p.7/14



Current status: Core (II.)

• User space daemon. Designed an abstract
interface, described in C++, for both the
kernel–daemon and daemon–plugin
communication. File system objects (inode, file,
etc) are mapped to C++ objects. A plugin inherits
from the generic classes to implement it’s own file
semantics.

GridFS – p.8/14



Current status: Globus FTP Client

Implemented read-only access. Unfortunately, several
bugs in the Globus FTP Client library make the whole
thing unusable. Namely:

• Implicit credential acquisition. The GridFS daemon
operates on behalf of another user, therefore it has
to acquire credentials for that user, before doing
GSI FTP operations. This works fine, however, the
Globus FTP Client library, even if provided with a
valid GSSAPI credential, tries to acquire one using
the default method, and will obviously fail.
Therefore, currently only a single user can access
the file system provided by the daemon, and the
daemon has to be run as that user. GridFS – p.9/14



Current status: Globus FTP Client
(II.)

• Crash upon ‘connection refused’. When trying to
open a connection to a server where no GSI FTP
daemon is running, an assertion inside Globus
FTP Client fails, and crashes the whole GridFS
daemon. This introduces the possibility for a trivial
denial-of-service attack.

GridFS – p.10/14



Current status: Globus FTP Client
(III.)

• No caching. Altough it is supposed to, Globus FTP
Client does not cache FTP control or data
connections; for each operation a new connecion
is opened and closed. As data is read in
memory-page sized blocks (usually 4K), the result
is zero performance.

These bugs are currently being reported to the Globus
team.

GridFS – p.11/14



Current status: Reptor

To be done. Shouldn’t be difficult at all, as only the

lookup operation has to be implemented, which must

make a single getBestFile() call and return the result

as a symbolic link.

GridFS – p.12/14



Availability

GridFS code will be imported into the EDG CVS tree

soon.

GridFS – p.13/14



Thank you for your attention!

GridFS – p.14/14


	Goals
	Mechanism
	What about SlashGrid?
	What about Condor's Pluggable File System?
	Prototype implementation
	Current status: Core
	Current status: Core (II.)
	Current status: Globus FTP Client
	Current status: Globus FTP Client (II.)
	Current status: Globus FTP Client (III.)
	Current status: Reptor
	Availability
	Thank you for your attention!

