Completion of the Spectrometer

- History
- The initial layout
- Hadron set-up: production of exotics
- EM Calorimetry
- A look to the various programmes
 - Polarisability of Kaons and pions
 - Exclusive meson production and DVCS
 - Double Charm set-up
- RICH-II
- RICH wall tracking detector
- Further tracking options
- Conclusions
History

- **1996** Mar: proposal for full COMPASS
 - muon and hadron programme
- **1997** Feb: conditional approval
- **1998** adaptation to available resources
 - Jul: approval of reduced ‘initial layout’
 - Sep: MoU for initial layout, omitting commitments for:
 - Large area tracking and triggering
 - Rich II
 - EM calorimetry
 - Full-scale DAQ
 - Goal remains the complete spectrometer
COMPASS initial layout

full layout

beam Large angle spectrometer Small angle spectrometer

initial layout

26 September 2002 G. Mallot Future Physics @ COMPASS
Physics with initial layout

<table>
<thead>
<tr>
<th>Missing detectors</th>
<th>Related physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large area tracking</td>
<td>High-Q^2 DIS</td>
</tr>
<tr>
<td>Rich II</td>
<td>PID only up to 30 – 40 GeV/c</td>
</tr>
<tr>
<td>EM Calorimetry, reduced DAQ</td>
<td>Basically no hadron program, apart from semi-leptonic decays</td>
</tr>
</tbody>
</table>
Status of initial layout

Eventually completed
to do:
- **RICH-I**
 3/8 photon detectors to be fixed for 2003
- **Straw detectors**
 9 of 15 installed and working
 5 ready to be shipped mid October 2002
 1 to be fixed for 2003
- **Polarised target magnet**
 using SMC magnet
 good performance, limited acceptance

S. Dalla Torre
PT Magnet

- Apart from acceptance same specification as SMC magnet
- Construction not satisfactory
- Original contract with OIS terminated amicably
- New contract being negotiated with different company
- Presently magnet being inspected
- Idea: build new coils
- Earliest ready for 2004 run, likely later
PT magnet acceptances

COMPASS magnet

SMC magnet

180 mrad

65 mrad

μ

preliminary - all

with Λ

26 September 2002

G. Mallot

Future Physics @ COMPASS
Initial layout ++

- **GAMS** 2000 lead glass blocks
- **ECAL** 1 frame
- Large area tracking
 - Trigger hodoscopes
 - Muonwall 1
 - Muonwall 2
 - SMC W45 chamber
 8 views, performance to be studied
- 3rd Saclay drift chamber
 - Replacing missing straw, 98% acceptance for SMC magnet
- Extra fibres and MWPCs
Production of Exotics

e.g.: \[pp \Rightarrow \eta \eta \Rightarrow 4\gamma \]

- Existing (to be refurbished):
 - Liquid hydrogen target, 40 cm
 - Recoil Proton detector RPD

- Essential: EM calorimetry, options:
 - ECAL1+GAMS (\(\equiv\) ECAL2 ')
 - ECAL1+ECAL2
 - Additional wide angle Detector
EM Calorimetry

ECAL1 + GAMS
geometrical
\(\gamma \)-acceptance 18 %
for \(\eta \eta(4\gamma) \)

ECAL1 + ECAL2
\(\gamma \)-acceptance 36 %
EM Calorimetry

ECAL1 + ECAL+
WAD
\(\gamma\)-acceptance 95 %
\(\eta\eta(4\gamma)\)
ECAL 1&2

• ECAL1
 – Frame installed
 – Cassette under construction
 – Operational 2004

• ECAL2
 – Design finished
 – Construction to be clarified
 – Operational 2006

• ADC readout
 FIADC: Fast integration, about 3000 channels existing of 8000, cables needed!
 SADC: Sampling ADC, design ongoing
ECAL1 frame
ECAL2

624 Matrix blocks (75x75mm**2)

764 lead/scintillator blocks (38.3x38.3mm**2)

2672 GAMS blocks (38.3x38.3mm**2)

Central hole (380x380mm**2)
ECAL Sampling ADC

- **SHAPER**
 - Stretching and smoothing
 - optimized for lead glass signals
- **ADC**
 - 100 MHz sampling
 - 10 bit resolution
- **FPGA**
 - Data compression
 - Signal fitting
 - Amplitude and Time

Simplified diagram of single channel ADC

- Shaper
- ADC
- 10 bit/100 MHz
- FPGA data processing
- Trigger
- data to DAQ

Input signal 10 GeV electron
Reshaped signal
Digitized signal

26 September 2002 G. Mallot Future Physics @ COMPASS 16
SADC cont.

• **Advantages**
 – elimination of long signal cables
 – very good time resolution 1-2 ns
 – rejection or correction of pileup events

• **Status and plans**
 – The design is being simulated and optimized
 – Full prototype test in summer 2003
 – Production in 2003 – 2004
Polarisability of K and π

- Kaon and pion beams
- Pb target, target veto
- EM calorimetry
Exclusive mesons and DVCS

\[\rho^0 \Rightarrow \pi^+ + \pi^- \quad \pi^0 \Rightarrow \gamma \gamma \quad \mu p \Rightarrow \mu' p' + \gamma \]

d'Hose

- muon beam needs long liquid hydrogen target
- Recoil proton detector
- maybe same wide angle ECAL as for exotics
Double Charm target set-up

- Production of double charm hadrons
- Proton beam 280 GeV
- Pack of silicon detector for decay vertices
- DAQ upgrade
- Second level trigger/filter farm indispensable
Space for RICH-II
RICH-II

- **Baseline proposal (under discussion):**
 - \(\pi/K \) separation 30 – 120 GeV/c as in proposal
 - Covers up central region and high momentum region, where RICH-I is weaker (e.g. beam pipe)
 - Use photons in visible and near UV (\(\lambda > 200 \text{ nm} \))
 RICH-I operates in \(\lambda < 200 \text{ nm} \) (CsI), less photons
 - Keep resolution unchanged \(\sigma_{\gamma,g} \cdot \sqrt{n_{\gamma}} \propto \text{cost} \)
 - Can release spacial (angular) resolution
 - Option: multi-anode PM: HAMAMATSU H6568-03
 already about 100 in COMPASS (SciFi)
RICH-II photon detection

- fast RICH, less pile-up
 - 10 ns vs 1 μs RICH-I
- reasonably simple
 - could be achieved for 2007
- large number of γ per ring
- readout
 - 1120 PMs per 2.8 m²
 - 18000 channels
 - effective pitch: ~ 11 mm
Rich Wall Detector
Rich Wall

- Improvement of Cherenkov ring resolution
- Improvement of momentum resolution
- Similar technique as muon wall 1
- Eight planes of 5.3x4.3 m²
- Ready for 2004, if approved in 2002
Further tracking options

- Strengthening of beam momentum reconstruction in BMS
 - two more planes (currently 4 planes, 92 % efficiency)
- Chamber in first spectrometer magnet
 - to improve pattern recognition and resolution
 - Larger tracking downstream of magnet SM2
- New large Q^2 hodoscopes in muon wall 1
 - presently calorimetric trigger only
- Larger tracking downstream of magnet SM2
 - current trackers smaller than aperture
- Replacing old SMC large-area drift chambers
 - 2002 performance to be understood
Further tracking options
Conclusion

- Projects of various maturity
- A must: EM calorimetry and DAQ filter
- Important: RICH-II and more tracking
- Planning for completion has started
- Still open for good suggestions AND new collaborators