Workshop on Future Physics @ COMPASS

Measurement of electric and magnetic π and K polarizability

@ COMPASS

Marialaura Colantoni on behalf of the COMPASS coll.
Polarizability

The polarizability (electric α and magnetic β) relates the average dipole (electric \vec{p} and magnetic $\vec{\mu}$) moment to external electromagnetic field.

\[
\vec{p} = \alpha \vec{E} \\
\vec{\mu} = \beta \vec{H}
\]

The *polarizability* is a quantity which characterizes a particle like its charge, radius, magnetic moment etc.
The pion polarizabilities can be described in the framework of the Chiral perturbation Theory (χPT) based on the chiral symmetry of QCD and Goldstone theorem.

Chiral dynamics describes:

- properties
- production
- decay amplitudes
- low-energy interactions of the Goldstone boson (π, η, K) among themselves and with γ's.
Pion polarizabilities

The χPT provide a rigorous way to determine α_π, β_π via the effective Chiral lagrangian using the coupling constants L_9^r, L_{10}^r obtained in the radiative pion beta decay ($\pi^- \rightarrow e + \bar{\nu} + \gamma$):

$$\overline{\alpha}_\pi = \frac{4\alpha f}{m_\pi f_\pi^2} (L_9^r + L_{10}^r)$$

the numerical values are:

$$\overline{\alpha}_\pi = (2.4 \pm 0.5)10^{-4} \, fm^3$$

$$\overline{\beta}_\pi = (-2.1 \pm 0.5)10^{-4} \, fm^3$$

consistent with the chiral symmetry $(\overline{\alpha}_\pi + \overline{\beta}_\pi) = 0$.

Measurements of pion polarizability

Photon-Photon Collision:

- From the results of the MARK II group (1990)[1] with the reaction
 \[\gamma + \gamma \rightarrow \pi^- + \pi^+ \]
 the value of
 \[\alpha_\pi = (2.2 \pm 1.6_{stat+sys}) \times 10^{-4} \text{ fm}^3 \]
 was deduced [2].

Measurements of pion polarizability

Pion Photoproduction:

- A test made by the Lebedev group (1986) with the reaction
 \[\gamma + p \rightarrow \gamma + \pi^+ + n \]
 showed feasibility.

High precision measurement made @ MAMI (A2 coll.). Data analysis is in progress.
Measurements of pion polarizability

We want to use

\[\pi^- + \gamma \rightarrow \pi^- + \gamma \]

the Primakoff Reaction
The Primakoff reaction

For the reaction:

\[\pi + Z \rightarrow \pi' + Z + \gamma \]

one measures the Primakoff cross section

\[
\frac{d^3\sigma}{dt\,d\omega\,d\cos\theta} = \frac{\alpha_f Z^2}{\pi \omega} \frac{t-t_0}{t^2} \frac{d\sigma_{\pi\gamma}(\omega,\theta)}{d\cos\theta} |F_A(t)|^2
\]

\(\omega \) photon energy in the antilab system

\(t = (p'_2 - p_2)^2 \)

\(t_0 = \left(\frac{m_\pi \omega}{p_{beam}} \right)^2 \)

\(\theta \) real photon scattering angle

\[
\frac{d\sigma_{\pi\gamma}(\omega,\theta)}{d\cos\theta} = \frac{2\pi \alpha_f^2}{m_\pi^2} \cdot \left(F_{\pi\gamma}^T h + \frac{m_\pi \omega^2}{\alpha_f} \cdot \frac{\alpha_\pi (1+\cos^2\theta)+\beta_\pi \cos\theta}{(1+\frac{\omega}{m_\pi} (1-\cos\theta))^3} \right)
\]

\(\alpha_\pi, \beta_\pi \) pion electric and magnetic polarizability
Measurement via Primakoff reaction

- The Serpukhov group (1985) with the Primakoff reaction

\[
\pi + Z \rightarrow \pi + \gamma + Z \text{ at } 40 \text{ GeV obtains:}
\]

\[\alpha_{\pi} = (6.8 \pm 1.4_{\text{stat}} \pm 1.2_{\text{sys}}) \times 10^{-4} \text{ fm}^3[1]\]

with the hypothesis \((\alpha_{\pi} + \beta_{\pi}) = 0\) and

\[\beta_{\pi} = (-7.1 \pm 2.8_{\text{stat}} \pm 1.8_{\text{sys}}) \times 10^{-4} \text{ fm}^3\]

\[(\alpha_{\pi} + \beta_{\pi}) = (1.4 \pm 3.1_{\text{stat}} \pm 2.5_{\text{sys}}) \times 10^{-4} \text{ fm}^3[2]\]

The goals

\[p_{beam} = 190 \text{ GeV/c} \] to increase the ratio of the coulombian/nuclear cross section

Higher Z target \[\rightarrow \sigma(Z^2) \]

Our goals:

- measure independently \((\alpha + \beta), \alpha, \beta\)
- enough statistics:
 - to get the statistical errors negligible versus the systematic ones
 - evaluate systematic error due to different cuts
 - more complete angular distribution
- higher energy \[\rightarrow \text{smaller } t \rightarrow \text{to fit} \]

Compass acceptance

- \(\sigma(p_T) \approx 15 \text{ MeV/c} \) like in the Antipov experiment:

\[N_{ev} \]
Trigger: \(\text{Hodoscope} \times \text{ECAL2} \)

\[\pi^- \quad \gamma \]
Flow diagram of the simulation

POLARIS
the generator

↓

COMGEANT:
the simulation program based on Geant 3.21

↓

CORAL:
COmpass Reconstruction and Analysis Library.
The generator

- Target 208Pb
- Thickness $0.3 \times X_0 = 1.7 \, mm$
- $\bar{\alpha}_\pi = -\bar{\beta}_\pi = 6.8 \cdot 10^{-4} \, fm^3$

- $t < 850 \, MeV^2$
- $1.05 \cdot m^2_\pi < s_1 < 30 \cdot m^2_\pi$
- $E_\gamma > 90 \, GeV$
Primakoff event reconstruction: \(E_\gamma > 90\text{GeV} \)

Trasversal component of four-momentum transfer

\[
\sigma_{p_x} = \sigma_{p_y} = 13 \text{ MeV}/c \\
\sigma_{p_T} = 18\text{ MeV}/c
\]
The efficiency $= \frac{N_{\text{rec}}}{N_{\text{gen}}}$

Constant
efficiency vs t

![Graph showing efficiency vs t_{MC} (GeV2)]
Primakoff event reconstruction

Pair (\(\pi\gamma\)) total energy

The \(t\) variable

\[
E_{\text{tot}} = E_{\pi} + E_{\gamma} \quad [\text{GeV}]
\]

\[
t \quad [\text{MeV}^2]
\]
Comparison with the Serpukhov data

<table>
<thead>
<tr>
<th></th>
<th>@ Serpukhov</th>
<th>@ COMPASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam momentum</td>
<td>40 GeV/c</td>
<td>190 GeV/c</td>
</tr>
<tr>
<td>beam intensity</td>
<td>10^6/spill</td>
<td>4 \times 10^7/spill</td>
</tr>
<tr>
<td>target</td>
<td>Z < Fe</td>
<td>Pb</td>
</tr>
<tr>
<td>scattered pion</td>
<td>\sigma_\Theta \approx 0.12 mrad</td>
<td>\sigma_\Theta \approx 0.04 mrad</td>
</tr>
<tr>
<td></td>
<td>\sigma_p/p \approx 1%</td>
<td>\sigma_p/p \approx (0.3 \div 1)%</td>
</tr>
<tr>
<td>outgoing gamma</td>
<td>\sigma_\Theta \approx 0.15 mrad</td>
<td>\sigma_\Theta \approx 0.031 mrad</td>
</tr>
<tr>
<td></td>
<td>\sigma_E/E \approx 3.5%@ 27 GeV</td>
<td>\sigma_E/E \approx 2%@ 120 GeV</td>
</tr>
<tr>
<td>total flux</td>
<td>10^{11}</td>
<td>\approx 3 \times 10^{11}/day</td>
</tr>
<tr>
<td>primakoff events</td>
<td>6 \times 10^3</td>
<td>4 \times 10^5/day</td>
</tr>
</tbody>
</table>
Polarizabilities Statistics

With a $2 \cdot 10^7 \, \pi / s$, the spill structure is 5 sec beam every 16 sec, $3.2 \cdot 10^{11} \, \pi$ are expected per day.

The interaction probability $R = \sigma N_T = 5 \cdot 10^{-6}$ assuming:

- $\sigma = 0.5 \, mbarn$
- $N_T = 10^{22} \, cm^{-2}$

The global efficiency is estimated to be $\epsilon = 24\%$ due to:

- tracking efficiency 92%
- gamma detection 58%
- combined acceptance of COMPASS and SPS 60%
- analysis cut to reduce backgrounds 75%

$$3.2 \cdot 10^{11} \times 5 \cdot 10^{-6} \times 0.24 = 4 \cdot 10^5 \, Events/day$$
Summary & Outlook

Serpukhov:

Z^2 dependence

$$R = \frac{d\sigma}{d\omega}^{\text{(extended)}} \frac{d\sigma}{d\omega}^{\text{(pointlike)} \text{th}}$$
Compass:

- Different targets: $\rightarrow Z^2$ dependence in the cross section.
- Also interesting a comparison with a pointlike particle with the reaction: $\mu^- + Z \rightarrow \mu^- + Z + \gamma$
- Constant efficiency on t
- Statistics 10^3 times better \rightarrow overall resolution 3 times better

$$\delta \bar{\alpha}_\pi \approx 0.4 \cdot 10^{-4} \, fm^3 \left(\approx \sigma_{\text{theory}} \right)$$

- Polarizability measurements for K^- are possible.
Kaon polarizability

The cross section scales down as $m^{-1} \rightarrow$ 3 times smaller compared to the π one,

the polarizability goes as $\overline{\alpha}_h = \frac{4\alpha_f}{m_h F_h^2} (L_r^9 + L_r^{10}) \rightarrow \overline{\alpha}_K = \frac{\overline{\alpha}_\pi}{5.4}$

Assume

- 3×10^5 Kaon/sec @ 190 GeV/c
- $60 < \omega < 300$ MeV to avoid K^* 1st excited state

overall resolution $\delta \overline{\alpha}_K = 0.6 \cdot 10^{-4} \text{ fm}^3$

$2 \cdot 10^4 \text{ events/day}$
\[F_{3\pi} \text{ measurement} \]

\[t = (p_1 - p_2)^2 \]
\[s = (p_2 + p_3)^2 \]
\[q_{\text{min}}^2 = \left(\frac{s - m_{\pi}}{2E} \right)^2 \]
\[\pi^- + Z \rightarrow \pi^- + \pi^0 + Z \text{ useful to access } \gamma \rightarrow 3\pi \]

\[F_{3\pi} \text{ allow to verify the low energy theorem: } \]
\[F_{3\pi}(0) = \frac{F_{\pi}(0)}{ef^2} \]

\[\frac{d\sigma}{dsdtdq^2} = \frac{Z^2 \alpha \sigma_f}{\pi} \left(\frac{q^2 - q_{\text{min}}^2}{q^4} \right) \frac{1}{s - m_{\pi}^2} \frac{d\sigma_{\gamma \pi \rightarrow \pi \pi}}{dt} \]

\[\frac{d\sigma_{\gamma \pi \rightarrow \pi \pi}}{dt} = \frac{F_{3\pi}^2}{128\pi} \frac{1}{4} \left(s - 4m_{\pi}^2 \right) \sin^2 \theta \]

\[F_{3\pi} = (12.9 \pm 0.9 \pm 0.5) \text{GeV}^{-3} \ [1] \quad F_{3\pi} = (9.7 \pm 0.2) \text{GeV}^{-3} \ [2] \]

Expected \approx 5 \cdot 10^3 \text{ events/day vs } \approx \text{ 200 Serpukov events in total.}

Marialaura Colantoni
Future Physics @ COMPASS - CERN 26-27/09 2002
Conclusions

Using **COMPASS** spectrometer one can measure:

- pion polarizabilities with an uncertainty of the same order of the theoretical one
- kaon polarizabilities for the 1st time with the Primakoff reaction
- the chiral anomaly amplitude for the $\gamma \rightarrow 3\pi$

\[\text{Diagram:} F_{\pi} \rightarrow \gamma \rightarrow F_{3\pi} \quad \gamma \rightarrow \pi \rightarrow \pi \]