TPC status and first results

13th CAST Collaboration Meeting
CERN 23.11.2002

Data taking calendar

<table>
<thead>
<tr>
<th>L</th>
<th>M</th>
<th>X</th>
<th>J</th>
<th>V</th>
<th>S</th>
<th>D</th>
<th>L</th>
<th>M</th>
<th>X</th>
<th>J</th>
<th>V</th>
<th>S</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Sep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Oct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Nov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
</tbody>
</table>

- **Background runs with magnet current OFF**
- **Background runs with magnet current ON**
- **Solar data runs (magnet ON & tracking)**
 - 23 hours effective exposure (~30% potential tracking time since Oct 8th)

Igor G. Irastorza

13th CAST Meeting - CERN 23.11.2002
Background data

Total background statistics accumulated so far: 28.5 effective days.
- About 8 of them with the magnet OFF
- Magnet mostly in “parking position”, i.e., horizontal and close to TPC measurement position
- Fe55 Calibrations taken regularly, but not enough to precisely monitor gain fluctuations.

Averaged background level (conservative cuts) $\sim 1 \times 10^{-4}$ c/cm2/s/keV but there are strong variations...
Background data

Evolution of background with time.

• Events after cuts
• Rate in fixed ADC range (roughly 3-7 keV) far from threshold and saturation limits

→ Physical background (no noise)

15 OCT | 22 OCT | 25 OCT

Igor G. Irastorza

13th CAST Meeting - CERN 23.11.2002
Background data

![Graphs showing data evolution over time]

Days indicated:
- 5 NOV
- 14 NOV
- 18 NOV
- 23 NOV
Background data

Data set 10 (last week) → Background very unstable

Peak while µM data taking

Sudden changes...
P/T changes?

In general...
• No clear correlation with magnet on/off
• Variations probably dominated by gain changes due to P and T changes. (though not clear correlation with periodic gain calibrations neither)
 • Need monitoring P & T of chamber gas!
• No clear correlation with magnet position but work still in progress, and more data needed with monitoring of magnet coordinates.

• Probably a mixed dependence of all of the above.
 • Need full record of SC parameters to disentangle every dependence (and correct for it if possible...)
Sun tracking data

• 23 hours of solar tracking data gathered so far
• Acquisitions not homogeneously distributed in time. Most of the data have been taken the last two weeks (data sets 9 and 10).

• Total spectrum:
Subtracted spectrum

Straightforward analysis with ALL data (excluding only set #10) gives positive excess...

Effect not meaningful until background instabilities better understood (and eventually corrected).
Using only data set #9:
- 4.7 hours of Sun tracking data
- 58 hours of background with reasonable stability

Already goes beyond Tokyo result

\(g \approx 1.5 \times 10^{-10} \text{ GeV}^{-1} \)
(1\~2\sigma limit)

Preliminary!
- Integral rate used only (more statistical refinements using spectral information could give better result)
- Conservative cuts
- No efficiency correction (small change)
Conclusions and what to be done next…

- The TPC has reached an almost continuous operational status with robust performance.
- 23 hours of Sun-tracking data taken so far.
- 28.5 effective days of background data in different conditions.
- Analysis software in advanced stage.
- First preliminary axion limit presented, obtained with a stable subset of data.
- Physical background presents complex variations that are not yet well understood. The possible dependencies are being studied, but for this (and for their eventual correction) we need to take...

Very important steps for the next weeks…

- **Precise monitoring** of P and T of the chamber gas:
 - It will allow to correct gain variations event by event.
 - Install pressure transducer (and thermocouples) and include in slow control system.
 - Determine if P & T precision is enough(?)

- **Final version** of tracking program (with full record of SC parameters and magnet position) working **all the time!!** Even during background runs.
 - It will allow us to systematically study background dependences with every kind of parameters.

- **SHIELDING.** It will reduce many possible causes of background variation (apart from the background itself):
 - Noise: the shielding will act as a very good Faraday cage
 - Visible light.
 - Temperature & Pressure.
 - Of course, radioactivity, specially radon fluctuations in the air.