Virtual Smart Card

Andrew Hanushevsky
Robert Cowles

Stanford Linear Accelerator Center

Enmeshed Private Keys

- **≠** Premise: Private keys and users don't mix
 - Inherently insecure model
 - No guarantee of good or any password choice
 - No guarantee of secure private key location
 - E.g., users store keys in network based file systems
 - No guarantee how private key was handled
 - E.g., users copy/e-mail keys to remote machines & leave them
- **■** User managed keys *cannot* be trusted

Solitary Private Keys

- **≠** Premise: Never give a user their private key
 - Can't mishandle something you don't have
- **■** Can provide a *stronger* security guarantee
 - Signed cert as secure as institution's accounts
- **■** Must provide agent-based key handling
 - E.g., smart cards

Virtual Smart Card (vsc)

- # Premise: Physical smart cards (psc) in software
 - vsc's have a 1-to-1 concept correspondence to psc's

Concept	Physical	Virtual
Procurement	Purchase/download	Request/generate
Possession	Physical	Authentication
Operations	Indirect	Indirect
Tamper protection	Self-destruct	Restricted access
Theft protection	Settable pin	Settable password

VSC Conceptualization

- **★** A vsc is implemented using a secure, access restricted server
 - One server holds many user's private keys
 - Hence, one server instantiates many vsc's
 - Can be well secured
 - Restricted physical access
 - Cages, keyed room, etc.
 - Restricted logical access
 - Only three access protocols needed: dns, ntp, and vsc
 - Keys can be encrypted via user-supplied passwords

VSC Procurement

User never sees the private key!

*When available on 1st request or automatic poll.

VSC Operation (vsc-proxy)

Externally authenticated (e.g., Kerberos)

Private key never sees the network!

VSC Theft Protection

Externally authenticated (e.g., Kerberos)

2. Send encrypted key-string

1. Generate key-string from a strong user password

3. Encrypt user's x509 private key and discard key-string

User must now supply key-string for vsc to use private key

VSC Advantages I

- **♯** Simple and effective
 - Models well-known physical object -- smart card
 - Initial certificate request is trivial
- **≠** Private keys never exposed
 - Can be further encrypted by user
- **■** Can get proxy cert anywhere in the world
 - No need to copy public/private keys

VSC Advantages II

- **♯** Can provide special extensions
 - EDG VOM extensions (natural fit)
- **■** Can provide special always-on services
 - Perhaps proxy cert revalidation
- **♯** Can provide *stronger* security guarantee
 - Signed cert as secure as institution's accounts

VSC Disadvantages

- **≠** Private keys are concentrated
 - Can be user-encrypted
 - Similar problem in Kerberos
- **■** May violate current CA CP/CPS
 - Political vs. practical reality
- **■** No more secure than external authentication
 - Need good authentication (e.g., K5)

Conclusion

- **■** Virtual Smart Cards effective
 - Simple, relatively transparent, secure
- **≠** Provides a path to more stringent security
 - Physical smart cards
- **■** Simplify user's lives
 - Ease of use reduces security lapses
- **■** Promotes a congenial grid security environment!