Status and Plans

LHC Accelerator

LHC first beam 10 September 2008

Frank Zimmermann, CERN, AB Department

17 September 2008

finally there!

1983 *LEP Note* **440** - S. Myers and W. Schnell propose twin-ring pp collider in LEP tunnel with 9-T dipole field; idea stimulated by G. Brianti > 25 years ago 1991 CERN Council: LHC approval in principle 1992 Eol, Lol of experiments **1993 SSC termination 1994 CERN Council: LHC approval** 1995-98 cooperation w. Japan, India, Russia, Canada, & US 2000 LEP completion 2006 last s.c. dipole delivered 2008 first beam

design parameters

c.m. energy = 14 TeVluminosity = 10^{34} cm⁻²s⁻¹

1.15x10¹¹ p/bunch 2808 bunches/beam

360 kJ/beam

*γ*ε=3.75 μm β*=0.55 m θ_c =285 µrad σ_{7} =7.55 cm σ*=16 .6μm

 Φ =0.64 (Piwinski angle)

LHC s.c. dipole magnet – 8.33 T

ode

LHC DIPOLE : STANDARD CROSS-SECTION

all s.c. magnets were tested in "SM18"

V. Chohan

Cumulative Cold Tested Magnets

- LHC powered in eight sectors (154 dipole magnets each)
- Time for energy ramp: ~20-30 min (energy from the grid)
- Time for discharge: ~the same (energy back to the grid)
- R. Schmidt

LHC magnetic cycle

- when one magnet quenches, quench heaters are fired for this magnet
- current in quenched magnet decays in about 200 ms
- the current in all other magnets flows through the bypass diode that can stand the current for about 100-200 seconds; resistors are switched in series

F.Rodriguez-Mateos, D.Hagedorn, R. Schmidt

training quench example at 9859 A

- Natural quench in A22R4 (magnet name 3176)
- 4 magnets quenched (3 after quench propagation)
- Sequence of events:

Magnet	Cryogenic cell	Local time	t quench [s]	l quench [kA]	E [MJ]
A22R4	21R4	16:50:34.947	0	9.859	4.957
B22R4	21R4	16:51:24.679	49.732	6.011	1.843
C22R4	21R4	16:52:07.532	92.589	3.829	0.748
C21R4	19R4	16:52:41.798	126.855	2.644	0.357
				Total	7.905

AMSiemko, MARIC 19 March 2008

A. Siemko (on behalf of MPP)

first beam induced quench at injection with < 4 10⁹ protons (~10⁻⁵ of design intensity)

B. Jeanneret et al, LHC Project Report 44 (1996)
"The intensity of the bunch shall therefore not be much larger than 3 10^9 protons."

First Beam Induced Quench

hardware commissioning in 2008

successful test steps (total #tests > 10000)

April May June July August Sept.

M. Lamont

start up 10 September "D-Day"

08.30 Beam to TEDS both lines. Interleaved injection beam 1 & 2.

09.00 Switch to beam 1 only. Kickers executing soft start.

09.30 Beam to TDI. Kickers on.

09.40 TDI out. Beam to collimators point 3.

09.45 Collimators IP3 out. Beam to left of point 5.

09.55 Collimators point 5 out, beam ~to point 6 but not to extr. line.

10.00 Beam to dump block (steered with DC bump). **Half way round!** 10.08 Beam to collimators in point 7.

10.12 Beam to point 8 collimators.

10.30 Beam 1 round > 1 turn (image on screen showing beam on first and second turns, image of trajectory – next slides)
 With a bit of correction - beam makes 3 turns (next slides)

beam 1 around ring in less <1 hour (12 h's in LEP!)

J. Wennninger

1st turn trajectory beam 1

M. Lamont

High point of the day was to have made *Google*!

images from ATLAS with beam on collimator in front of them

M. Lamont

"D-Day" afternoon – beam 2

non-serious cryogenics problem delays beam 2 inj. until 13:30

Switch to beam 2 only.

13.30 onto the TDI

13.40 TDI out, beam to point 3.

Cryogenic instability needs a little more time

13.55 Beam to 6, steered into start of dump line

14.05 Beam to left of 6. Lost. Investigating.

14.25 Problem understood. Beam to right of 5. 20 shots for CMS.

14.40 Beam round to 3 (after one correction in 4). Few corrections.

14.45 Beam to ALICE.

14.50 Beam to ATLAS. Few shots for them.

Few minutes no beam. Reboot for screen server.

15.00 Beam > 1 turn

beam 2 around the ring in 1 .5 hours; longer than beam 1 (no beam, corr. problem pt 6, shots for CMS, ALICE & ATLAS)

One of the first image from CMS when the beam hitting the collimators at Point 5

Run # 62063, event # 2433

"D-Day" evening

16.00 Beam 2 to collimators ATLAS Dispersion data Kick response data In parallel BI looking at BPM acquisition for >1 turn

18.00 Inject and dump commissioning (all collimators out)
Inject and dump up to 9 turns OK.
20.00 BPM acquisition for multiple turns sorted out
Trimming Qh, Qv, Q'

21.30 Beam 2 makes at least 300 turns!

Fast BCT data and tune measurements - Qh .31 Qv .23 23.00 Start systematic polarity checks of orbit correctors

J. Wenninger

other findings from "D-Day"

rms orbit < 1.5 mm rms, for beam 2 in both planes</p>

< 1mm with 2.5 mm peak should easily be possible (4 mm peak is LHC design value)

250 of 1000 orbit correctors were tested with beam 2 – all

responded with correct sign, and within 5% of expectation

tunes set to 0.4, 0.2-0.3 in vertical

tune trims of order 0.4 in vertical, less horizontally

- chromaticity yet to be measured (cannot be too bad; from detuning)
- a little bit of coupling
- BPMs work, FBCT work, screens work, BLMs work,...
- energy of both beams within 1 per mill of SPS
- <15 mm error in circumference w.r.t. design for beam 2</p>

dispersion oscillation; error in IR3 and perhaps IR6 horizontal dispersion beam 2, 1st turn

orizontal dispersion beam 2, 1st turn, QTL8+QTL10 LR3 inverted

Thursday & Friday, 11-12 Sept.'08

R. Bailey

"Inject and dump" "Circulate and dump after 50 ms" "Circulate - dump request" RF capture working – for beam 2 ! Integer tunes OK Longitudinal pickup & mountain range display working Systematic polarity checks

Circulating beam Beta-beat measurement Wire scan H and V works

Friday ~23:30 high-V transformer fault in pt 8

YASP DV LHCRING INJ-TEST-NB V1@0 [START] beam 2 🗜 o = = 🗔 🚍 🙀 Yiews 🔄 🔡 🎟 More 🖉 🖾 🖴 H Harmonics [12/09/08 02:01:55] ស្រី 🔂 Data from 12/09/08 02-01-47 250 Harmonic [AU] 50 0 10 20 30 50 40 60 70 80 • Horizontal Harmonics ស សី V Harmonics [12/09/08 02:01:55] 80 Data from 12/09/08 02-01-47 Harmonic [AU] 0 10 20 30 50 70 40 60 80 Vertical Harmonics

J. Wenninger

tunes 64 and 59 as design (vertical FFT has second peak!?)

A. Butterworth, RF Group

longitudinal mountain range recorded ~5 minutes after rf capture

beam lifetime
~infinite
(too good to be
measured;
many hours)

commissioning so far superfast

but challenges ahead:

- ramping in energy (up to 5 TeV)
- higher intensity
- squeeze
- 7 TeV

tentative plan

when beam is back (Thursday), continue commissioning: beam 1, rf capture, correct optics, chromaticity etc

first attempts to ramp to ~600 GeV over the weekend or during next week

a few shifts with collisions at 450 GeV

~1 week stop to complete hardware commissioning and qualify interlock systems before going to higher intensity and/or higher energy

then ramp to 5 GeV, squeeze, and physics run through end of the year

First collisions – 2 on 2, clean collisions everywhere

R.Bailey, September 2008

lower commissioning energy ~5 TeV

- no quenches up to 5 TeV (based on SM18 & S45)
- quench recovery much faster below
 9 kA (~5 TeV) magnet current
- saving in powering tests (200-300 A sufficient for most 600 A circuits)
- beam operation easier at 5 TeV

(magnets much farther away from quench limit)

Stage A: 5TeV collisions

- Approx 30 days of beam to establish first collisions
- Approx 2 months elapsed
 - Given optimistic machine availability
 - Un-squeezed
 - Low intensity
- Continue commissioning thereafter
 - Increased intensity
 - Squeeze

	Parameter	S	Rates in	n 1 and 5
k _b	N	β* 1,5	Luminosity	Events/
		(m)	(cm ⁻² s ⁻¹)	crossing
1 (3)	10 ¹⁰	11	1.1 10 ²⁷	<< 1
4	10 ¹⁰	11	4.5 10 ²⁷	<< 1
43	10 ¹⁰	11	5.0 10 ²⁸	<< 1
43	4 10 ¹⁰	11	8.0 10 ²⁹	<< 1
43	4 10 ¹⁰	3	2.9 10 ³⁰	0.36
156	4 10 ¹⁰	3	1.0 10 ³¹	0.36
156	9 10 ¹⁰	3	5.4 10 ³¹	1.8

All values for nominal emittance, 10m β^{*} in points 2 and 8

All values for 936 or 2808 bunches colliding in 2 and 8 (not quite right)

	Pa	aramete	rs	Beam	levels	Rates in	1 and 5	Rates in	2 and 8
	k _b	N	β* 1,5	l _{beam}	E _{beam}	Luminosity	Events/	Luminosity	Events/
			(m)	proton	(MJ)	(cm ⁻² s ⁻¹)	crossing	(cm ⁻² s ⁻¹)	crossing
	43	4 10 ¹⁰	11	1.7 10 ¹²	1.4	8.0 10 ²⁹	<< 1	_	
e<	43	4 10 ¹⁰	3	1.7 10 ¹²	1.4	2.9 10 ³⁰	0.36	Depend	l on the
5 T	156	4 10 ¹⁰	3	6.2 10 ¹²	5	1.0 10 ³¹	0.36	collisior	pattern
	156	9 10 ¹⁰	3	1.4 10 ¹³	11	5.4 10 ³¹	1.8		
	936	4 10 ¹⁰	11	3.7 10 ¹³	42	2.4 10 ³¹	<< 1	2.6 10 ³¹	0.15
	936	4 10 ¹⁰	2	3.7 10 ¹³	42	1.3 10 ³²	0.73	2.6 10 ³¹	0.15
	936	6 10 ¹⁰	2	5.6 10 ¹³	<mark>63</mark>	2.9 10 ³²	1.6	6.0 10 ³¹	0.34
e<	936	9 10 ¹⁰	1	8.4 10 ¹³	94	1.2 10 ³³	7	1.3 10 ³²	0.76
7 1	2808	4 10 ¹⁰	11	1.1 10 ¹⁴	126	7.2 10 ³¹	<< 1	7.9 10 ³¹	0.15
	2808	4 10 ¹⁰	2	1.1 10 ¹⁴	126	3.8 10 ³²	0.72	7.9 10 ³¹	0.15
	2808	5 10 ¹⁰	1	1.4 10 ¹⁴	157	1.1 10 ³³	2.1	1.2 10 ³²	0.24
	2808	5 10 ¹⁰	0.55	1.4 10 ¹⁴	157	1.9 10 ³³	3.6	1.2 10 ³²	0.24

R.Bailey, LHCMAC June 2008

Configuration of collision pattern

- 25ns and 75ns operation
 - Nothing to do
 - Collisions determined by bunch pattern
- 43 or 156 bunch operation
 - Can optimise according to needs
 - Previously thought to displace bunches in one beam (asym)
 - Can do better (symmetrically displace bunches in both beams)
 - Allows to adjust luminosity sharing between 2 and 8 while keeping maximum number of collisions in 1 and 5

Displaced	0	4 asym	4 sym	11 sym	19 sym	0	36 sym	68 sym
IP 1	43	39	43	43	43	156	156	156
IP 2	42	38	34	21	4	152	76	16
IP 5	43	39	43	43	43	156	156	156
IP 8	0	4	4	11	19	0	36	68

R.Bailey, L	HCMAC J	June 2008
-------------	---------	-----------

	75ns	25ns
IP 1	936	2808
IP 2	912	2736
IP 5	936	2808
IP 8	874	2622

LHC Upgrade

Unlike the Tevatron or LEP, the LHC already has all the attributes to go very quickly to design luminosity.

It is reasonably to assume that the machine will reach 10^{34} cm⁻² s⁻¹ on a 5-year timescale.

It is therefore necessary to plan an upgrade path <u>now</u> in order to be able to open the door to a factor of 4-5 improvement on the same timescale.

Two Strong Reasons for LHC Upgrade

 after few years, statistical error hardly decreases
 radiation damage limit of IR quadrupoles (~700 fb⁻¹) reached by ~2016
 ⇒ time for an upgrade! 3) extending physics potential!

staged approach to LHC upgrade "phase-1" 2013:

new triplets, D1, TAS, $\beta^*=0.25$ m in IP1 & 5, reliable LHC operation at ~2-3x luminosity; beam from new Linac4

LHC upgrade paths for IP1 & 5

ultimate beam (1.7x10¹¹ protons/bunch, 25 spacing), $\beta^* \sim 10$ cm early-separation dipoles in side detectors, crab cavities \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off- $\delta\beta$ full crab crossing (FCC) L. EV W. SU F. Zi

magnets

- ultimate LHC beam (1.7x10¹¹ protons/bunch, 25 spacing)
- β* ~10 cm
- crab cavities with 60% higher voltage
 - \rightarrow first hadron crab cavities, off- δ β -beat

large Piwinski angle (LPA)

F. Ruggiero, W. Scandale. F. Zimmermann

larger-aperture triplet magnets

- 50 ns spacing, longer & more intense bunches (5x10¹¹ protons/bunch)
- $\beta^* \sim 25$ cm, no elements inside detectors
- long-range beam-beam wire compensation
- \rightarrow novel operating regime for hadron colliders, beam generation

parameter	symbol	nominal	ultimate	Early Sep.	Full Crab Xing	L. Piw Angle
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25		25	50
beam current	I [A]	0.58	0.86	0.86	0.86	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	\$.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	1 .25
full crossing angle	θ _c [µrad]	285	315		0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	<u> (</u> 1)0	0	2.0
hourglass reduction		1.0	1.0	0.86	% 0.86	0.99
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	1 5.5	15.5	10.7
peak events per #ing		19	44	294	294	403
initial lumi lifetime	τ_{L} [h]	22	14	2.2	2.2	4.5
effective luminosity $(T_{1}, -10)$	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.4	2.4	2.5
(¹ turnaround ⁻¹⁰ II)	T _{run,opt} [h]	21.2	17.0	6.6	6.6	9.5
effective luminosity $(T_{-5} h)$	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	0.56	1.15	3.6	3.6	3.5
(1 turnaround - 5 II)	T _{run.opt} [h]	15.0	12.0	4.6	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	1.04 (0.59)	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.36
image current heat	P_{IC} [W/m]	0.15	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) $\tau_{\rm b}$	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	4.5	4.3	3.7	3.7	5.3
comment		nominal	ultimate	D0 + crab	crab	wire comp.

how can we achieve this?

<u>ES or FCC</u>: dynamic β squeeze, or dynamic θ change (either IP angle bumps or <u>varying crab voltage</u>) **<u>LPA</u>**: dynamic β squeeze, or dynamic change of bunch length

upgrade bunch structures nominal 25 ns ultimate & 25-ns upgrade (ES & FCC) 25 ns 50-ns upgrade (LPA), no collisions in LHCb! 50 ns 50-ns upgrade with 25-ns 50 ns collisions 25 ns

in LHCb

experimenters' choice (LHCC July 2008)

no accelerator components inside detector
 lowest possible event pile up
 possibility of easy luminosity levelling

→ full crab crossing upgrade *Met*

CERN

HHH, CARE Meeting, CERN, 17.09. 2008

Schedule ¹	Otype & first	t b	e	2	T	n	- 🕂						
Schedule ¹	Linnacar HHH Crab Cay												
Schedule ¹	Linnacar HHH Crab Cay										163		1 -
SCHEUUIE -		itv Vs	alia	dat	tio	n V	No	rk	sho	n A	Πσι		
						'				P 1 1			
						-							
			2008	3		2009		20	10	20	011	2	012
	Cavity		_		_						\square		++
	Vertical test										++		++
	HOM couplers												
R & D and test stand work	LOM coupler						_						
	Main coupler												
	Tuner												
	Cryostat												
Confirmation main parameters													
Full Prototype Design for installation	Cryostat plus cavity												
	Personnel / Hardware safety												
	Tunnel layout, cryogenics interface												
	Survey / Alignment												
	Radiation Issues												
	Cavity servo-control control												
	Synchronisation control												
	Slow controls												
	RF power source												
Paperwork for review													
Design validation review													
	Construction cryomodules												
CavityR & D and test stand workCavityHOM couplersLOM couplerMain couplerMain couplerTunerCryostatCryostatConfirmation main parametersFull Prototype Design for installationCryostat plus cavity Personnel / Hardware safety Tunnel layout, cryogenics interface 	Full bunker tests												
	Construction power source												
	Construction electronics		-		1								
	System tests					П							
	Tunnel mods.			$\uparrow \uparrow$									
	Installation			++									
			_										

local crab cavities together with IR phase-2 ~2017?

LHC injector upgrade

Reasons:

- need for reliability:
 - accelerators are old [Linac2: 1978, PSB: 1975, PS: 1959, SPS: 1976]
 - they operate far from their design parameters and close to hardware limits
 - the infrastructure has suffered from the concentration of resources on LHC during the past 10 years
 - need for better beam characteristics

present and future injectors

Proton flux / Beam power

Roland Garoby, LHCC 1July '08

layout of the new injectors

upgrade planning ...

forecast peak & integrated luminosity evolution

