Fabric AutomationThe Challenge of LHC Scale Fabrics

LHC Computing Grid Workshop
David Foster
12th March 2002

How do we deal with LHC reality?

- Several Thousand Machines
 - Software and Hardware maintenance
- Geographically Distributed System
 - Multiple system administrators and policies
 - Wide area networking
- Tens of PB of data
 - Random access patterns
- Thousands of Physicists
 - Many potential failure modes
 - No clear solutions for QOS, Fault tolerance etc.

The Challenge is "Creative Simplification"

Distributed Model

- Run jobs at CERN
 - LXBatch
- Run jobs across European Grid
 - EDG Testbeds
- Run jobs across World-Wide Grid
 - Start with US-EU Interconnect
 - GLUE, DataTag initiatives

The GRID is currently the technology framework

GRID Framework

- Application Environment
 - RedHat, Grid services (e.g GAT from GridLab) etc.
- High level middleware functions
 - Resource Broker, Information Server, Storage Element etc.
- Distributed components
- Common protocols
 - TCP/IP, HTTP, SOAP, XML Document Exchange etc

While everything works, no problem ...

LHC GRID System Requirements

- Predictable Behaviour
 - Understand failure modes (Disk, Server, Network)
- Change Management
 - The dreaded "Certification" process
- Scalability
 - Understand how scalable the systems really are.
 - Experience needed
- Cost Effectiveness

Architectural Considerations

- What does it take to make a predictable system?
 - Hardware, Fabric, Middleware, Applications
 - Maximise automated corrective actions
 - Must be part of the architectural design
 - Must be part of the software implementation
 - Must be part of the hardware selection
- The cost of failures must be understood so must not:
 - Cause panic
 - Require expert assistance in every case
 - Bring down" the system

Cost Effectiveness

- Computer center organisation is important
 - Managing 20'000 machines
 - Physical Logistics
 - "Locatability"
 - Upgrade Strategies
 - Increased Automated Tasks
 - Even one manual intervention not tolerable
 - Causal Analysis
 - Human tasks must be kept Manageable

Overall Architecture Needs

- A "Systems level" Approach
 - How do we manage state in the grid?
 - Workflow
 - Recovery Strategies
 - What functions are distributed/replicated where, how, and location strategies ?
 - Data Storage/Management Strategies
 - Pb disk farms ? SAN/NAS Interconnects ?
 - Data Organisation ?
 - Node Management Strategies
 - Node Downtime Impact

Fabric Management Overview

- Fabric management
 - Manage the nodes
 - Configuration, Installation, Maintenance
 - monitoring, scheduling, fault tolerance
 - Interface the Grid
 - Grid to local policy mapping
 - Monitoring the resource
 - Information on activity, performance etc to other grid functions.
 - Error reporting

Current Activities

- EDG-WP4
 - Working on producing an automated testbed by end 2003.
- Many computer centers have their own solutions
- Some commercial products exist
 - Solutions target specific problems and environments
- CERN computing services
 - Running production services (~1000 servers)
 - Should integrate WP4 functions as they become available.
- GGF
 - No apparent focus on FM although parts are in other activities, e.g. Grid-Local policy mapping, various monitoring activities.

LCG Strategy

- Move towards increasingly automated production environments as soon as possible
- Work with existing initiatives
 - Accelerate some developments
 - Work within the constraints of existing production environments.
- Inject resources into "productisation"
 - Address reliability, manageability and costeffectiveness

Implementation Strategy

- Work from the "Bottom up"
 - Review periodically to understand the hardware technology strategy in the 3 year timeframe.
 - Theory and Practice
 - Productise the best in configuration management.
 - Productise the best in installation management
 - Productise the best in monitoring
 - Work with a common middleware software environment
- Work from the "Top down"
 - Define a common application environment
 - Design overall workflow and resource strategies
 - Define farm management strategies

High Level FM Objectives 2002

- Complete a first technology review.
- Configuration system for managing software installations and updates in production.
 - Work with EDG-WP4 technologies
- Monitoring system for data collection and provide alerts in production.
 - Gain initial experience using scalable technologies.
 - Combine work of WP4 and IT/FIO Group (SCADA)
- Production Hierarchy
 Testbed->LXProto->LXShare->LXBatch (LXPlus)

Configuration Management Actions

- Target September 2002
- Complete work to put in place a configuration management EDG-LCFG server
 - Test the HLD components in practice
- Create EDG-LCFG client scripts to replace SUE and BIS capabilities
- Create infrastructure to enable automated RPM installation
 - Scalable access to RPM files
 - RPM management

Monitoring Actions (SCADA)

- Prototype 0 (March)
 - Re-implementation of PEM with PVSS
 - Monitor major farms (LXPlus, LXShare, LXBatch)
 - Capable of 100 parameters/machine
- Prototype 1 (Mid-year)
 - Monitor software components (e.g. castor)
 - Automate simple actions
 - Connect to configuration management system

Conclusions

- There is a consensus amongst everyone that production environments are important now.
 - Must evolve our understanding of what makes a predictable environment.
 - Architectural, Development and Technology issues.
 - We will start taking developments into production in 2002.
 - Much is to be done and much work is still underway.
 Simplification is the key.
- Must track developments
 - Web services and architectural evolution
 - Commercial interest in providing solutions