Disk and File Systems

12 Mars 2002

Philippe GAILLARDON IN2P3 Data Center

Introduction

- This talk is based on our actual experience of Mass Storage.
- Its aim is not to provide a definitive solution for the LHC but to outline the key points we are facing.

Disk and File Systems

- Disk
 - Disk Only?
 - Hierarchical (Disk/Tapes)?
- File Systems
 - One UNIX File System?
 - One Name Space?

Disk versus Hierarchical

- Choice of hierarchical system at IN2P3
 - Cost
 - Volume availability
 - May lead to disastrous performances
- Common points
 - Sharing with many user hosts (hundreds to thousands)
 - Sharing with many servers
 - Static or dynamic access to several servers
 - Disk (and tape) drives must cooperate: Fiber Channel solutions look promising
 - The user network shall have increased performances

File System versus Name Space System

- File System
 - Solutions based on a unique File System can't be imagined for Pbytes volumes (recovery, performances....)
 - File System can be only a simulated file system
- Name space system
 - The adressability is at file level
 - The access must be as transparent as possible for the user applications
- Many solutions exist in the HEP community

IN2P3 today's solution

- HSM solution based on HPSS
 - Disk and Tape Hierarchy
 - BABAR Objectivity: 65 TB / 20 TB disk out of HPSS
 - Others: 45 TB / 1.7 TB disk
 - Total: 110 TB
 - One File-Name Space
- with RFIO Access
 - Developed RFIO 64 bits with CERN
- Function very close to CASTOR

Which experiments?

BABAR

- Objectivity: 65 TB / 20 TB on disk
- Other (of which analysis and user space): 1.5 TB
- Astrophysics
 - EROS: 9 TB
 - AUGER: 16.5 TB
- LHC
 - CMS (2TB), ATLAS (1.8TB), LHCB (1.6TB), ALICE (1.3TB)
- Other
 - D0 (5.7 TB), VIRGO (0.9 TB)...

Performances

- Dynamic data path between user host and the right data server
 - Best achieved by RFIO/HPSS readlist/writelist (10 MB/s)
 - RFIO streaming mode has good results (5 to 8 MB/s)
 - The basic read/write performances are poor (1 to 2 MB/s)
- Several RFIO servers bound to an HPSS disk server
 - Static server name resolution at the moment

Miscellaneous topics

- Access rights
 - The UNIX-style permissions are inadequate
- Identity
 - All is based on uid/gid. This seems difficult to change.
- Quality of Service
 - It's achieved thru the COS (Class of Service) for HPSS. It differs from other implementations based on directory tree.
- Statistics
 - The statistics provided by HPSS and RFIO are insufficient

User view of the Mass Storage

- Have a user data base (or book keeping)
 - Cost of search operations
 - High for searching in large tree directory
 - Inadequate/prohibitive for seeking in files
 - Associate file names with specific physics-significant fields and management fields.
 - The Mass Storage is used only as a data store
- Transparency for applications
 - Source is not always available, RFIO API is not so simple
 - We are developing a transparent access thru BYPASS (WYSCONSIN University)

Conclusion

- Announced volumes require
 - Cooperation of data servers or Fiber Channel drives
 - Name Server support
- Use of several Mass Storage in HEP
 - Don't provide too imbedded solution (physics/mass storage)
 - Promote user usage of data book keeping
- Documentation
 - http://doc.in2p3.fr/hpss/
 - http://doc.in2p3.fr/doc/public/products/rfio/rfio.html

