Technology Overviews: LAN Networks

LHC Computing Grid Workshop
12 March 2002

Gaetano Maron

INFN – Laboratori Nazionali di Legnaro

Ethernet

- Ethernet is the dominant technology in the LAN (10, 100, 1000 Mbps). It is everywhere
- 10 Gbps connections over long distances (40 kM) make it attractive also for MAN
- Most of the Internet data traffic is originated from a ethernet LAN and ends to a ethernet LAN
- All this started with this simple draw showing the first ethernet design (R. Metcalfe, Xerox, 1973) featuring an initial transmission rate of 2.49 Mbps.

Ethernet Evolution

Switched Ethernet, Commodity PCs and **Computing Farms**

GigaEthernet Point to Point measurements

PC: supermicro PIIIDME

(i840) 64b/66MHz

NIC: SK9821

- Throughput up to 123 MB/s
 GE link 125 MB/s
- no packet loss

- More in appendix
- LAN based Event Builder
- CMS GE based Event Builder
- CMS Myrinet based Event Builder

- no high level protocol used
- zero copy mechanisms

From the test beds to the production centers

Are the IP protocols suitable for the 1-10 Gbps LANs?

- A key issue is the data moving within the host
- The host internal memory bandwidth is involved; faster CPUs does not help too much
- Interrupt rate and checksum calculation
- Basic structural issues involved:
 - interaction among NIC, OS, APIs, protocols
- Implementation should be reviewed for:
 - protocols (no data copy)
 - NICs (host CPU offloading)

Checksum offloading and zero copy

The Virtual Interface (VI): an interconnection architecture

- Originally developed by Compaq, Intel and Microsoft with the aim to define a standard paradigm for interconnecting computers in cluster.
- It is a standard interface for clustering software independent of the underlying network technology. Basically it is distributed messaging technology
- Basically there are two new capabilities:
 - Direct memory to memory transfer. It allows bulk data to bypass the protocol processing and to be transferred directly between the buffers on the communicating machines (Remote DMA - RDMA);

 Direct application access; application processes can queue data transfer operation directly to VI compliant network interfaces without operating system involvement.

All this:

- improves the CPU utilization
- reduces the latency
- enables zero copy protocols

Current VI implementations:

- Fibre Channel FC-VI
- 1 10 Gbps Ethernet (over IP) VIIP
- Infiniband VIPL
- proprietary interconnection networks
 - GigaNet cLAN
 - Compaq Servernet II

Storage Networking

- Farm model uses a network based storage system
- LAN evolution (hardware, protocols, etc.) impacts then heavily on the storage networking evolution and then the design of out future farms

File Access

- TCP-offload Engines (TOEs)
- VI/IP transport
- 10 GbE switches
- File system & data management on storage server

Block Access

- iSCSI drivers on application servers
- TCP-offload Engines (TOEs)
- 10 GbE switches
- File system on application server
- Data management on storage server

Emulex Ge VI/IP card

Direct Access File System (DAFS)

- DAFS is a file access protocol based on NFSv4 that has been designed to take advantage of the VI memory to memory (RDMA) interconnect technologies
- NFSv4 used as starting point, but significantly improvements on:

DAFS Collaborative:

- Intel
- IBM
- Compaq
- ~ 60 Companies

Storage over IP: iSCSI

 Internet SCSI (iSCSI) is a draft standard protocol for encapsulating SCSI command into TCP/IP packets and enabling I/O block data transport over IP networks

iSCSI adapters combines NIC and HBA functions.

- 1. take the data in block form
- handle the segmentation and processing with TCP/IP processing engine
- 3. send IP packets across the IP network

Parallel Servers to handle fast DBs

A single "transport" for everything: The Infiniband (IBA) Technology

1 x Link 4 x I ink

12 x Link

Infiniband transport protocols

- IBA has been developed with Virtual Interface in mind. VIPL 2.0 includes IBA extensions and RDMA operations.
- SCSI RDMA Protocol (SRP). It is a T10 standard.
 - SRP defines mapping to IBA architecture
 - it is the transport protocol over IBA
 - SRP is based on VI
- Direct Access Files System (DAFS)
- Direct Access Socket (DAS)
 - TCP/IP functionality over VI/IB

Infiniband Main Characteristics

Infini Switch

IBA Host Channel Adapters

Torrent HCA

- 64K Queue Pairs
- Expandable Memory (256M)
- Dual 4X (10 Gbps)
- Integrated PPC 405
- Small Form Factor PCI / PCI-X
- Copper and/or Fibre

Infini Switch

IBA Switches

1x Leaf Switch 32 1x (2.5 Gbps) ports in 1 U chassis

4x Leaf Switch 24 4x (10 Gbps) ports in 1 U chassis

Director Switch

- 64-port capable, increasing to 256
- 1X, 4X, 12X
- Flexible I/O Support
 - Fibre Channel
 - GbE
 - iSCSI
- Flow control

IBA Blades

20 Port Switch (16 + 4)

- 16 2.5Gb/s (1X) links to the backplane and Four 10 Gb/s (4X) external ports
- Non-Blocking 16 + 4 implementation: 10 Gb/sec Aggregation

1.26 GHz PIII Tualatin 35 W/Blade ServerWorks LE

INFN Infiniband Pilot Project

- formal agreement with:
 - Intel
 - Infiniswitch
 - Mellanox (in discussion)
- aim of the project:
 - IB link characterization
 - IB based farm to experience
 - low latency farming
 - storage over IB (both block and file access)
 - blade server configuration
 - IB based event builder
- Status:
 - first 4 HCA + 1 Leaf switch to be delivered beginning of April

Ethernet and IBA

Final Remarks (I)

- Future LANs will continue to be dominated by Ethernet
- Recent Ethernet developments (TOE, VI, etc.) extends its application field to:
 - Storage Area Network (iSCSI)
 - High speed NAS (DAFS)
 - Low Latency IPC
- This can have a significant impact on the design of our future farms
- These fields are new, but they are maturing quickly (rate of announces is impressive)
- Storage over IP at 1 Gbps will lead to a medium performance commodity storage network
- Storage over IP needs 10 Gbps to be competitive with SCSI, FC and IBA.
- 10 Gethernet is at the moment focused on the backbones and on the MAN applications (high cost x port). To extend it to the LAN applications is needed to have:
 - Small, compact and "cheap" switches
 - NICs and HBA to to entry in the host systems
 - PCI-X based host systems (ok)
- Storage over IP is an excellent way to connect different storage technologies, as it speaks the "lingua franca" of the networks: TCP/IP.
- We need to experience all this

Final Remark (II)

- IBA has been designed for low latency high speed clustering. Max copper cable length is < 20 m.
- IBA has been design with VI in mind and then is optimized by definition for:
 - Storage Area Network (SRP)
 - High speed NAS (DAFS)
 - Low Latency IPC
- It features high level of integration, multiple speed range (2.5, 10, 30 Gbps). This should lead to low cost per port (also if it will be not classified as "commodity component")
- First (few) products only now. Real take off not before 2003; full deployment of the technology will require long time.
- IB based blade servers are interesting for our farms.
- IB based farm backbone will be prob. cheaper than Ethernet ones.

- Storage over IP can be transported over IBA
- IB native storage (?)
- Needs for test beds

ADOPTION RATE TRENDS Computer Bus and HBA

Source: Strategic Research, 9/00

A resulting scenario

Protocols: iSCSI, DAFS,NFS, etc

Conclusions

Appendix

A1: The CMS T2 Prototype in Italy

Application Server
Dual PIII – 1 GHz/ 1.26 GHz Tualatin
512 MB
2x80 GB Eide disk + 1x20 GB for O.S.

Data Server
Dual PIII – 1 GHz
Dual PCI (33/32 – 66/64 512 MB)
8x80 GB Eide Raid disks or
6x180 GB SCSI Raid disks
1x20 GB disk O.S.

A2: A severe test bed: LAN based Event Builder

- Event Builder (EVB) in the LHC experiments are performed on switched networks
- CMS EVB needs a Tbps network. Two approaches under investigation:
 - Gigaethernet based FVB
 - Myrinet based EVB
- EVB demonstrators and related simulations are severe test beds to validate new networking technologies

A3: The CMS GE based Event Builder Demonstrator EVB 15x15 performance - Throughput

- Throughput up to 116 MB/s, ie 93% link speed
- sawtooth due to MTU (no event aggregation)
- · no packet loss observed
- scales
- aggregate throughput ~15 Gbps

A4: Myrinet based Event Builder

STOP

- Myrinet typically used as cluster interconnect
- point to point links, byte wide, full-duplex, 2 Gbps per direction, very low error rate

- packet structure: routing header, payload and tail each crossbar switch strips leading byte from routing header
- wormhole routing (versus store-and-forward)
 no buffering, low latency, arbitrary length packets
- byte based flow control (STOP/GO)
- no packet loss inside switching fabric

- basic unit Xbar16 (8x8)
- · CLOS networks, eg CLOS-128 switch

128-Port Clos Switch

8-port line cards with one Xbar16 each

pre-wired network on backplane

8-port line cards with one Xbar16 each

24x24 EVB Aggregate Throughput

Assuming scaling with fully populated Clos-128 64x64 EVB with 14 Gbyte/s aggr. throughput

A5: Checksum offloading and zero copy

A6: Infiniband main characteristics

- Topology
 - Switched Fabric
 - Thousands of nodes per sub-net
 - Multiple subnets bridged w/routers
 - IPv6 addressing x-subnet
- Fabric Transactions
 - Unified fabric for IPC,
 - Networking, and Storage
 - Channel based interconnect
 - QoS (Service Levels, Virtual Lanes)

- Reliability
- Automatic fail-over in switch
- Support for redundant fabrics
- Physical Layer
- Four wire link (2 pairs)
- 2.5Gb/sec signaling rate, dual-simplex
- Copper & Fiber support
 - Copper 17M
 - Fiber 1X 100M 10KM
- Multiple link widths
 - •X1, X4, X12

Protocol

- 16 bit local address / multiple MTUs (256-4096)
- VI-based service types with extension
 - connected, datagram, reliable datagram, raw datagram, atomic operations, multicast
- Ordering guarantees for connected services
- HW acknowledge
- Credit-based link flow control
- End to end flow control
- In-band management

