RTAG on LCG Software

!'_ Process Management

Fons Rademakers (ALICE/chair)
Marco Cattaneo (LHCD)
Gabriele Cosmo (IT)
Simon George (ATLAS)
Stephan Wynhoff (CMS)

11 March 2002 Process RTAG

Mandate

= Define a process for managing LCG software. Specific tasks to
include

= Establish a structure for organising software, for managing
versions and coherent subsets for distribution

« Identify external software packages to be supported

« Identify recommended tools for use within the project — to
include configuration and release management

= Estimate resources (personpower) needed to run an LCG
support activity

Guidance — it is assumed that
= Procedures and tools will be specified
= Will be used within the project

= Can be packaged and supported for general use
= Will evolve with time

11 March 2002 Process RTAG 2

i In Addition

= This RTAG does not make any
recommendations on how experiment
internal software should be developed and
managed

= However, if an experiment specific
program becomes an LCG product it
should adhere to the development
practices proposed by this RTAG

11 March 2002 Process RTAG 3

i Organization

= One representative per experiment, plus IT
= Marco Cattaneo (LHCDb)
= Gabriele Cosmo (IT/G4)
= Simon George (ATLAS)
= Fons Rademakers (ALICE/Chair)
« Stefan Wynhoff (CMS)

= First meeting 4t" February
=« Intensive meetings (> 10 hours) + E-mail discussions

= Timescale
= Initial report in 1 month
« Final report within 2 months (LGC workshop)

11 March 2002 Process RTAG 4

i Consultation of External Experts

s Discussions with Christian Arnault on CMT
during productive CMT workshop

= Presentation by H.P. Wellisch on SCRAM

11 March 2002 Process RTAG

i Assumptions (not in mandate)

All LCG software projects will be components of one overall
architecture

= An architect will be appointed to define this architecture. The
architect will:
= Be technically on top of all issues
= Have a wide experience in the field and a good track record

= Be able to motivate the people, to explain the issues (like why and why not)
= Have the final say

= LCG software projects will define a common software development
process that all LCG projects will adhere to:
= Not highly formalised, but assume that it will be based on one or more of the

current best practice methodologies, e.g.: XP, RUP, USDP
= Architecture-centric

= Iterative and incremental approach to software development ("Release early, release
often")

= Use-case driven ("Let user feedback drive the development").
= We propose tools and procedures to support such a process

= Which remain valid even if not all assumptions turn out to be true
11 March 2002 Process RTAG

i General Recommendations

= All LCG projects must adopt the same set of
tools, standards and procedures

= Which must be centrally installed, maintained and
supported

= Adopt commonly used open-source or
commercial software where available

=« In preference to “"Do It Yourself”

= All recommendations in this report are
unanimously supported by the RTAG members

11 March 2002 Process RTAG

“Architecture-centric”

Projects should be decomposed into small teams: 2 to 5 people

Software should be decomposed into packages
= A package is an atomic unit

= With a well defined interface
= Establish clear interfaces as soon as possible
= Adopt coherent naming conventions

= Language bindings: C/C++ mandatory, other languages (e.g. Java, Python, Perl, C#)
optional

= Typically one developer is “owner” of a package with check-in permission

Supporting tools:
= Design: no specific tool, but UML notation

= Code versioning: CVS (including access policy)
= Checkin only by recognized developers, checkout by anybody

= Build tool: GNUmake
= Configuration management: CMT, SCRAM

= Tools for managing platform-dependencies, packaging, exporting: autoconf,
CMT, SCRAM/DAR, rpm, GRID install and export tool

11 March 2002 Process RTAG

“Release early, release often”

= Major release 2 to 3 times/year
= Release deliverables:

Source and binaries in common place distribution formats, e.g. tar and rpm, GRID
package/installation format (for all supported platforms at the same time)

Test and validation suites with reference output

Up to date documentation: install, user and reference manual, design documents for
core components, code examples

Hyperized manuals on the web (doxygen, Ixr)
Release notes - What has changed since last release in each package

= Development release as often as possible (once per 2-3 weeks)
= As often as needed to stay in synch with rest of LCG project

= Releases identified by number (x.y.z)
= Use CVS tags to identify releases and package versions

= Automated nightly builds + regression tests and benchmarks

= Using latest tags made by package developers, on top of most recent
development releases

= Build optimized and debug versions

= Tests integration

= Tests portability on supported Elatforms and compilers
r

11 March 2002

ocess RTAG

“Let user feedback drive the
development”

Meetings with users

= Planning meetings to define features for next major release
= Annual workshop

Facilitate discussion with users

= Bug reporting

React to reports with priority

= Animate mailing list/discussion forum (also used to discuss new features)
= Single point of entry for all projects, with uniform look and feel

Training

= Hand on tutorials

Supporting tools:

= Considering SourceForge as single point of entry for all projects

11 March 2002

Automatic creation of archived mailing lists, discussion fora (HyperNews)
Browse access to CVS (c.f. CVSWeb)

Bug reporting and tracking tool (c.f. Remedy, Bugzilla)

Release archive

Task management

Projects statistics

Process RTAG 10

i Testing and Quality Assurance

= Test on different architectures, different compilers,
32/64 bit, little/big endian, Unix/Win32

= To maintain portability of software to future platforms
= To increase the chance of finding bugs
= For example (minimum subset):
= 1386, Sparc/64, 1A-64
= Linux, Solaris, Windows
= gcc, CC, VC++, icc, ecc
= Adopt coding conventions and rules
= Do not reinvent the wheel: use existing rules
= Adopt a rule checking tool and an existing rule set (RuleChecker, CodeWizard)

= QA tests

= Memory checking (Insure++), unit tests, regression tests, validation tests,
performance tests (McCabe)

= Dependency analysis (Deputy)
= Create automatic process for development releases

11 March 2002 Process RTAG 11

i External Software

= Central installation of third party software

= In one easy to find place
= Not buried deep inside some release structure
= Single distribution point with rpm/tar files

= Multiple versions made available

= Let users (or integrators) choose the version they want via appropriate configuration
tools

= New versions installed on request

= No need for additional “private” installations by individual projects
= Clearly define coherent set of versions used for each release

= Streamlined installation process

= Uniform installation procedures for all external packages in same format as LCG
software

= Build up local expertise on widely used external packages
= Provide first level support to users
= Interact with authors to report bugs etc.

= In particular case of HEP specific libraries:

= Local expertise includes active participation in evolution of the software, representing
needs of CERN users

11 March 2002 Process RTAG 12

‘_L Specific External Packages

=« Examples given as indication of scope, actual packages depend
on recommendations of other RTAGs

= General purpose
= E.g. Boost, Python, XML Xerces-C

= HEP specific
- CLHEP

= Frameworks and toolkits
= ROOT, GEANT4

= Mathematical library

11 March 2002 Process RTAG

i Roles

= Release manager
= Overall release manager for all LCG core projects
= Communicates with project managers
= Is in control and responsible for major releases
= Defines release schedule
= Coordinates integration of external and internal packages
= Ensures completeness and overall consistency of deliverables

= Quite a lot of work, so post could rotate between LCG project
managers
= Librarian
= Builds and tests on all reference platforms
= Installs and distributes the releases
= Keeps external software up to date
= Configures, installs, maintains the tools supporting the process

11 March 2002 Process RTAG

14

i Roles

= 100l smith

= Installs and maintains all products and tools needed to support
the development process

= QA support person
= promotes and facilitates QA process within projects

= Technical writer
= Keeps manuals, tutorials, etc. complete and up to date

11 March 2002 Process RTAG

15

i Manpower Estimation

= 1 release manager
= Rotates between project managers with each major release

= 1-2 librarians, 1 once project stabilizes
= This is FTE, should always be more than 1 person

= 1-2 tool smiths, 1 once project stabilizes
= Task could be shared with librarian

= 1 QA support person
= 1-2 technical writers

= Some of these tasks scale with size and scope of the
LCG project

11 March 2002 Process RTAG

i Specific Free Tools

CVS
= automake, autoconf, gmake
s CMT, SCRAM (choose one, both appear to meet requirements)
= Cvsweb
= LXR (Linux X-reference)
= Hypernews
= Majordomo
= RPM (RedHat Package Manager)
= Doxygen
= Deputy

11 March 2002 Process RTAG 17

i Specific Commercial Tools

= SourceForge

= Collaborative Software Development (CSD) platform from VA
software

= Contains: cvs interface, bug reporting, mailing list, monitoring
and reporting, searching, Oracle9 interface, etc.

= IRST rule checker
= CodeWizard
s Insure++

= McCabe

11 March 2002 Process RTAG 18

