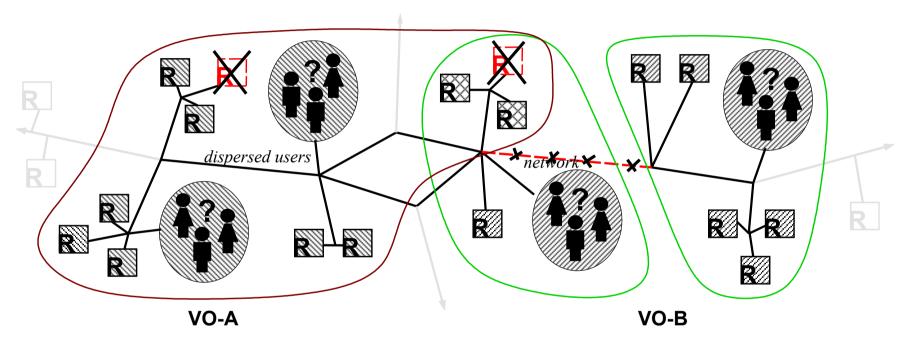


Information Services and Monitoring Projects

Jennifer M. Schopf Argonne National Lab James Magowan IBM UK



LCG Workshop March 13, 2002

the globus project www.globus.org

Resource Discovery/Monitoring

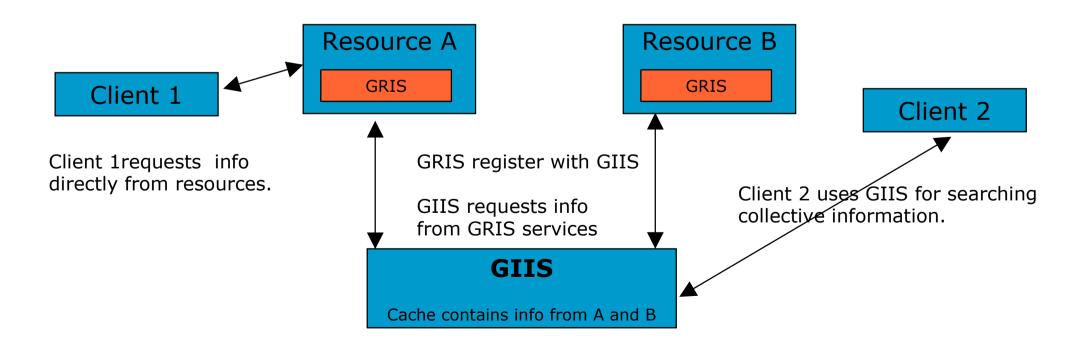
- Large numbers of distributed sensors with different properties, varying status
- Need different views of this information, depending on community membership, security constraints, intended purpose, sensor types, etc

Grid Monitoring and Information Services

- System information is critical to operation of the grid and construction of applications
- We need:
 - Systems that work through failures
 - Interoperablity between grids
 - Agreements/standards to allow continued use of local monitoring (if it already exists)

Overview

- Framework
 - MDS Globus information service
 - R-GMA EDG WP-3 information service
- Coordination and Schema Work
 - PPDG/GriPhyN joint monitoring effort
 - GLUE-schema effort
 - Schema work in GGF


- Globus Information Service
- Used by iVDGL, GriPhyN, PPDG, EDG, NMI, Grads, etc.
- Requirements and characteristics
 - Uniform, flexible access to information
 - Scalable, efficient access to dynamic data
 - Access to multiple information sources
 - Decentralized maintenance
 - Secure information provision
- Main contact John McGee (mcgee@isi.edu)

the globus project www.globus.org

MDS Architecture

- Resources run a standard information service (GRIS) that speaks LDAP and provides information about the resource
- GIIS provides a "caching" service
 - Resources register with GIIS
 - GIIS pulls information when requested by a client (when out of date)
- GIIS provides the collective-level indexing/searching function

Protocols

- MDS protocols based on LDAP
- Dynamic Registration via Reg. Protocol (GRRP)
 - soft-state protocol
- Resource Inquiry via Info. Protocol (GRIP)
 - Co-located with resource on network
- Resource Discovery (via GRIP or other)
 - Using GRIP allows resource/directory hierarchy
- Also well defined interfaces to add new sensor data

Soft-state Registration

- Periodic notification
 - "Service/resource is available"
 - Expected-frequency metadata
- Automatic directory construction
 - Add new resources to directory
 - Invite resources to join new directory
- Self-cleaning
 - Reduce occurrence of "dead" references

MDS-2 Implementation

- Grid Information Service (GRIS)
 - Provides resource description
 - Modular content gateway
- Grid Index Information Service (GIIS)
 - Provides aggregate directory
 - Hierarchical groups of resources
- NOTE: EDG Ftree
 - flexible backend for MDS by EDG WP3
 - currently in EDG testbed installation of MDS

What's next for MDS (core)

- MDS 2.2 expected in April 2002
 - Will harden the 2.1 code
 - Additional performance improvements
 - Address some of the packaging difficulties that occurred with 2.1
- Notification is currently not included in MDS 2.2 because it was not required as part of the use cases gathered by the joint monitoring group
- The following release will likely be the OGSA-ified version, currently under discussion, and will include notification

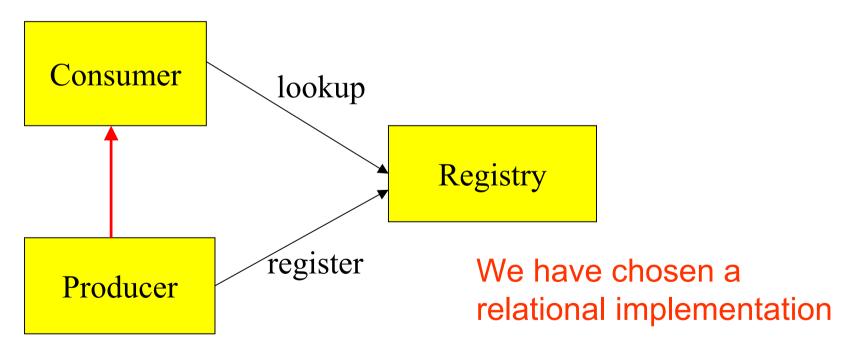
What next for MDS Monitoring

- Leading the effort to have common schemas between EDG and US projects
- Defining additional information providers in cooperation with sensor developers
- One example GridFTP logging data
 - source address, file name, file size, number of parallel streams,
 TCP buffer size, start and end timestamps, total time consumed,
 aggregate bandwidth achieved, read/write
 - www-unix.mcs.anl.gov/~vazhkuda/GridFTP-Information-Provider/

Overview

- Framework
 - MDS Globus information service
 - R-GMA EDG WP-3 information service
- Coordination and Schema Work
 - PPDG/GriPhyN joint monitoring effort
 - GLUE-schema effort
 - Schema work in GGF

Introduction


- Europe
 - European DataGrid Project
 - DataTAG
 - CrossGrid (new)
- GMA
 - from GGF Perf Working Group
 - several implementations
- R-GMA
- Implications of OGSA
- EDG TestBeds

Grid Monitoring Architecture (GMA)

 We use it not only for monitoring but also as the basis of an information system

R-GMA

- Not a general distributed RDBMS system, but a way to use the relational model in a distributed environment where ACID properties are not generally important.
- Producers announce: SQL "CREATE TABLE" publish: SQL "INSERT"
- Consumers collect: SQL "SELECT"

Table Example

The round trip time from RAL to Lyon as measured pinger was 500 ms on the 9th November at 11:00.:

(RAL, Lyon, Pinger, 1500, 001-11-09T11:00Z)

A set of such tuples could be stored in a table:

NetworkMonitor(NM1, NM2, Tool, Measurement, Time/Date)

Any structured data can be represented in tables in this manner.

Complex queries can be formulated with SQL.

Power behind R-GMA

- The set of tables producers publish constitute a global relational schema
- Individual producers contribute "views" on this global virtual database
- Views can themselves be expressed in SQL
- Queries against the global schema have to be matched with suitable producers
- This soon becomes complicated due to issues of soundness and completeness of producers so we need a mediator.

the globus project www.globus. Schema and views I

CPULoad (Global View)						
Country	Site	Facility	Load	Timestamp		
UK	RAL	CDF	0.3	19055711022002		
UK	RAL	ATLAS	1.6	19055611022002		
UK	GLA	CDF	0.4	19055811022002		
UK	GLA	ALICE	0.5	19055611022002		
СН	CERN	ALICE	0.9	19055611022002		
СН	CERN	CDF	0.6	19055511022002		

CPULoad (Producer 1)							
UK	RAL CDF 0.3 19055711022002						
UK	RAL	ATLAS	1.6	19055611022002			

CPULoad (Producer 2)							
UK	K GLA CDF 0.4 19055811022002						
UK	GLA	ALICE	0.5	19055611022002			

CPULoad (Producer3)							
СН	CERN	ATLAS	1.6	19055611022002			
СН	CERN	CDF	0.6	19055511022002			

Schema and Views II

CPULoad (Producer 1)							
UK	RAL CDF 0.3 19055711022002						
UK RAL ATLAS 1.6 19055611022002							

the globus project

WHERE Country = 'UK' AND Site = 'RAL'

CPULoad (Producer 2)							
UK	UK GLA CDF 0.4 19055811022002						
UK	GLA	ALICE	0.5	19055611022002			

WHERE Country = 'UK' AND Site = 'GLA'

SELECT load FROM CPULoad WHERE Site='GLA'

SELECT load FROM CPULoad WHERE Facility='CDF'

Example

NetworkMonitor						
NM1	NM2	Tool	Measurement			
RAL	Lyon	Pinger	1500			
RAL	CERN	Pinger	800			

StorageElement					
Name	NM				
RALS1	RAL				
CERNS1	CERN				
LyonS1	Lyon				

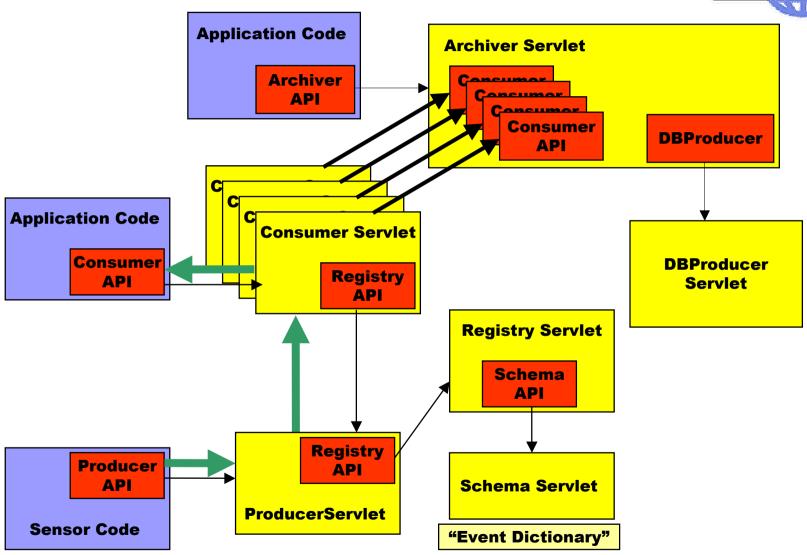
ComputingElement						
Name	NM	:				
RALQ1	RAL					
CERNQ1	CERN	:				
LyonQ1	Lyon					

SELECT S.Name, C.Name, N.Measurement

FROM NetworkMonitor N, ComputingElement C, StorageElement S

WHERE S.NM = N.NM1 AND C.NM = N.NM2 AND MEASUREMENT < 1000

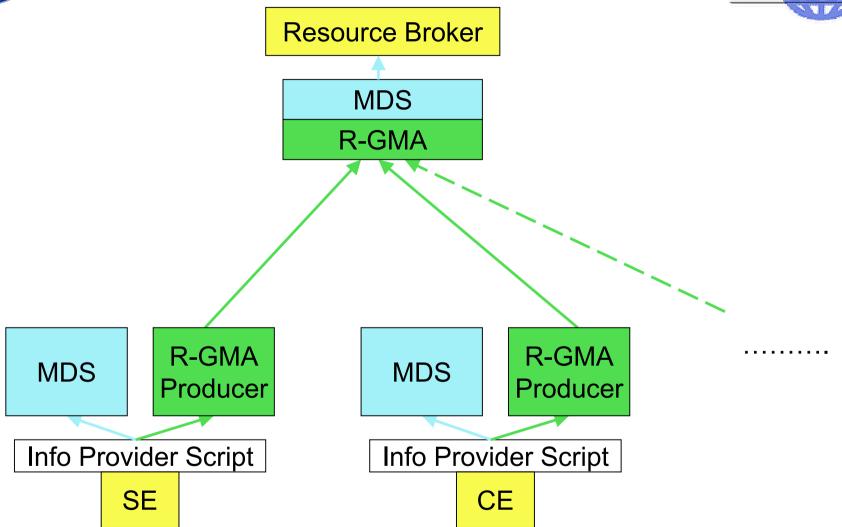
S.Name	C.Name	Measure ment
RALS1	CERNQ1	800



OGSA - Future

- OGSA and GMA originate from GGF
- R-GMA is conceptually close to OGSA
- OGSA replaces resources with services
- OGSA has an index for locating services
- R-GMA might (eventually) use OGSA index to provide the functionality needed for the Schema/Registry
- In the short term the R-GMA Registry and Schema will instead be OGSA services
- Notification (Source and Sink) may provide some of the functionality we require for R-GMA
- We plan to be quick off the mark with this work

the globus project
www.globus.R-GMA Architecture


EDG Testbeds

- Existing testbed contains MDS, Ftree and R-GMA
- R-GMA will be used in upcoming testbeds to feed information into MDS
 - Minimum disruption, Resource Broker
 - Use existing backend scripts
 - Test R-GMA with proper workload
 - Gain experience in configuring R-GMA

TestBed 2

DataGrid Testbed 2

- The main info services will be R-GMA
- Security via Spitfire Mechanism (EDG WP2)
- Shift towards Web Services
- More powerful Mediator
- GRM/Prove using R-GMA as transport
- Improved documentation

Summary

- Moving towards R-GMA from Ftree and MDS
 - R-GMA to initially feed into MDS
- Using GMA from GGF
- Relational view of the world
- As powerful as the mediator
- Very similar to upcoming OGSA
 - servlets not web services at the moment
 - move towards Web Services and OGSA

Overview

- Framework
 - MDS Globus information service
 - R-GMA EDG's information service
- Coordination and Schema Work
 - PPDG/GriPhyN joint monitoring effort
 - GLUE-schema effort
 - Schema work in GGF

PPDG/GriPhyN/iVDGL

PPDG

 Delivery of end-to-end applications and integrated production systems

GriPhyN

 Virtual Data for Data Grids - resource management, security, fault tolerance research in support of virtual data

iVDGL

- Create, operate and evaluate international research lab for data-intensive science
- All using common Grid middleware
 - Globus, Condor, etc.

How can we coordinate our efforts?

- October 2001 formed the joint PPDG/GriPhyN/iVDGL monitoring working group
- Cross-cutting effort between experiments to have a common framework

- Co-chairs: Jennifer Schopf, Brian Tierney
- www.mcs.anl.gov/~jms/pg-monitoring
- mail to pg-monitoring@mcs.anl.gov

Charter

• The goal of this group is to coordinate the monitoring effort between GriPhyN/iVDGL and PPDG. There is a large body of work involving monitoring systems for distributed or Grid resources, and we plan to leverage heavily from them whenever possible.

Gather Use Cases and Requirements

- Defined a template
- 19 use cases from ~9 groups
- Roughly 4 categories
 - Health of system
 - System upgrade evaluation
 - Resource selection
 - Application specific progress
- Working on requirements document now

Deploy a Common Framework

- MDS GIIS for joint project use
- Possibility of using WP-4 network monitoring framework (currently under discussion)?
- Need for joint schemas at the Grid level- see GLUE-schema work in JTB

GLUE-Schema Effort

- Part of HICB/JTB GLUE framework
- To address need to common schemas between projects
 - framework independent
 - something to translate into, not a requirement within fabric layer
- Co-chairs: Cristina Vistoli and Brian Tierney
- maillist: glue-schema@hicb.org
- www.hicb.org/glue/glue-schema/schema.html

Problems with Schema's

- Naming MetaData implies a structure, e.g. relational, hierarchical, etc
- Attribute/Measurement units
- Attribute/Measurement naming
- Object/Entity naming
- Representation of a schema (LDAP, SQL, XML, CIM, etc)
- A lot of schemas out there
 - information, monitoring, scheduling, accounting, security, and more!

Goal

- Define a minimum common schema requirement for interoperability
 - Compute Elements, Network Elements, Storage
 Elements
 - EDG, DataTag, PPDG, GriPhyN, iVDGL, etc.!
- Proposed first step: creation of a table comparing some of the initial approaches
 - First draft sent to mailing list Monday

Example

EDG Object	t			single/n	n					single/
class	EDG attribute	desc. The architecture of the hosts composing the CE-	required	l utti	type	globus object dass	globus attribute	desc. informally names the Instruction Set Architecture (ISA) of the computing	required	mutli
Element	Architecture	assumed all are identical	У	single	as	MdsComputer	Mds-Computer-isa	informally describes the platform type of	у	multi
						MdsComputer	Mds-Computer- platform	the computing element informally names the	у	multi
						MdsCpu	Mds-Cpu-vendor	CPU vendor informally names the	у	multi
						MdsCpu	Mds-Cpu-model	CPU model informally names the CPU version or	у	multi
						MdsCpu	Mds-Cpu-version	stepping	у	multi
						MdsCpu	Mds-Cpu-features Mds-Cpu-	informally names optional CPU features inficates the dock	s n	multi
						MdsCpu	speedMHz	speed of a CPU	n	multi

Overview

- Framework
 - MDS Globus information service
 - R-GMA EDG WP-3 information service
- Coordination and Schema Work
 - PPDG/GriPhyN joint monitoring effort
 - GLUE-schema effort
 - Schema work in GGF

DAMED WG

- Discovery And Monitoring Event Description
 Working Group
- Chairs
 - > Jennifer Schopf, ANL
 - > James Magowan, IBM
- Dammed if we do
 - Not everyone will be happy
- Dammed if we don't
 - Never reach our goal of seamless interoperability of grids (one big grid e.g. internet)

Charter

- Define a basic set of monitoring event descriptions
 - information (attributes) associated with a particular data element
 - conventions for the representation of the value associated with it.
- Develop standard representations of the most widely used measurement values (the "top N".)
- Emergence of a set of conventions and recommendations that will ease the task of defining richer, domain-specific schemas

Milestones

- Research existing schemas
 - draft of comparison of some schemas currently in process
 - Completion by April 2002
- Develop "English" descriptions for the "top N" monitoring elements.
 - Completion by May 2002
- Map English definitions to basic technologies including LDAP, SQL, XML.
 - Draft for discussion by GGF-5

Simple Steps

- Links to current Grid schema effort
- Units and names for basic top n attributes/Measurements
- More complex entities involving more than one measurement/attribute.
- Solve Entity Identity Problems

How to get involved

- Subscribe to mailing list
 - damed damed-wg@gridforum.org
- WebSite
 - http://www-didc.lbl.gov/damed
- EDG input through WP3 to DAMED
 - wp3 (EDG) edgschemas@jiscmail.ac.uk

Other efforts

- DataTAG WP4 (Ghiselli, Vistoli)
 - http://datatag.web.cern.ch/datatag/
- Distributed Monitoring Framework (Tierney), Web 100
 - http://www-didc.lbl.gov/DMF/
- Network Weather Service (Wolski)
 - http://nws.cs.ucsb.edu/
- PingER (Cotrell)
 - http://www-iepm.slac.stanford.edu/pinger/
- CrossGrid WP3
 - http://www.crossgrid.org/
- HENP working group in Internet2
 - http://www.internet2.edu/henp/
- PyGMA (LBL), NASA-GMA (Smith, NASA Ames)
- and more!

Additional Information

- MDS
 - www.globus.org/gt2/mds2.1/
- PPDG/GriPhyN/iVDGL joint effort
 - www.mcs.anl.gov/~jms/pg-monitoring/
- Glue-schema
 - www.hicb.org/glue/glue-schema/schema.html
- R-GMA
 - hepunx.rl.ac.uk/grid/wp3/
- damed-wg
 - http://www-didc.lbl.gov/damed