

WP9 Earth Observation Applications

1st Annual Review Report to the EU

ESA, KNMI, IPSL, RAL/BADC, ENEA

Introduction to EO scenario and requirements

- WP9 Objectives
 - Achievements
 - Issues and actions
 - Plan for the year

Summary

Earth Observation Community GRID interactive scenario

OZONE: a case of Global Environmental Monitoring

GOME analysis detected ozone thinning over Europe 31 Jan 2002

GRID requirements:

- · Multi instrument data fusion
- Distributed data sources, science and institutional users

Complex data processing (1d

data = 40 d)
processing

 Near real time deliv.

Number crunching: interferometry subsidence, DEM generation

Pomona (Cal): subsidence velocity fields 40 ER51/2 images (92-99), Ambiguity: 28 mm

GRID requirements:

- large data files (10+ GB)
- stages with intensive processing
- science driven value adding

WP9 Objectives

- Specification of EO requirements
- Bringing Grid-aware application concepts into the Earth Science environment
- Adaptation of existing systems and selected EO applications to use the DataGrid infrastructure
- Testbed validation through prototyping activity
- Activities handled in coordination and synchronisation with other related and relevant work packages

Achievements (1)

- Gathering of EO Requirements, State-of-the-Art Survey (see D9.1, D9.2)
- Wide promotion in the Earth Science and Space community
 - ESA grid initiative, SpaceGRID, CEOS
- Experiences with Testbed0
 - Testing and evaluation of GLOBUS in own environment
 - Demonstrated processing of GOME Data from operational environment, job execution at ENEA, results back at ESRIN

Achievements (2)

- Grid Interface Platform
 - Procurement of dedicated infrastructure (cluster, network)
 - Installation & testing of middleware (Network Monitoring, UI, LDAP). Others to follow (CE, SE, etc.)
 - Setting up the Virtual Organisation for EO
 - Experience gained with OpenPBS and (SGI) farms
 - Packaging IDL environment into RPM for grid-wide deployment. IDL Licensing Issues partially solved

Achievements (3)

- Adaptation of EO Applications
 - Porting the OPERA code to make it 'grid aware' and working on Linux machines
 - Porting the Ozone data validation application on the GRID
 - Adaptation of ESA GOME algorithm for GRID deployment
 - Demonstration of distributed processing chain: IPSL validation of KNMI products, visualisation of results using grid-enabled IDL
- Testbed1 Validation Plans & follow through

Issues and actions

- Execution of EO Validation / Test plans dependent on Testbed1 availability + good documentation
 - Important feedback was given to the Integration Team
 - Have been able to construct EO demonstration
 - Rapid improvements expected once basic problems solved
- Wide range of EO Applications and user community
 - Some requirements may not be supported by DataGrid Architecture
 - Need more experience using DataGrid middleware and infrastructure
 - Need experience of other applications
 - Develop EO Application components for interfacing to DataGrid
- Lack of GRID awareness in EO
 - More feedback and contribution from EO users outside
 - Power of the grid concept needs to be demonstrated

Plan for the year

- Completion of TB1 Validation Tests
- Installation of TB1 high bandwidth across few sites
- EO Application Demonstration and Prototypes
- Milestone for success will be the processing and validation of 1+ year of GOME data using the DataGrid
- Continue to channel EO Requirements into the Architecture Design
- More promotion in the EO community: Bring other EO applications to the DataGrid
- Continue GRID promotion throughout Earth- and Space-Science Community (e.g. CEOS GRID meeting in May)

Summary

- Application of GRID in EO:
 - Enormous, non-stop data voulmes
 - Complex number crunching algorithms
 - Progressive refinement of data to produce higher quality products
 - Near real time turnover
 - Product generation chain involving different organisations and users
 - Collaborative: distributed users and data

