Top Polarization from New Physics

Jessie Shelton
 Rutgers

J. Shelton, arXiv:0811.0569
work in progress with D. Krohn, L.T. Wang

APS DPF Meeting, July 27, 2009

Tops and new physics at the LHC

- The LHC will be a top factory: $\sigma(p p \rightarrow t \bar{t})=830 \mathrm{pb}$
- Nearly 1 SM top pair per second at low design luminosity
- Precision characterization of SM top system a key part of the physics program
- Beyond the SM, new physics responsible for EWSB must have large couplings to the top
- Anticipate relatively large cross-section for associated production of top and new physics
- New physics will couple differently to t_{L}, t_{R}
$\circ \Rightarrow$ net polarization of tops from new physics
- polarization will depend on kinematics and chiral couplings
- Top polarization a window into chiral structure of new physics

SM top decays

- Top quarks decay before hadronization dilutes information about initial polarization
- angular distributions of decay products contain information about parent top polarization
- direct probe of couplings at NP vertices
- Angular distribution of daughter particles in top decays:

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{f}}=\frac{1}{2}\left(1+\mathcal{P}_{t} \kappa_{f} \cos \theta_{f}\right)
$$

- 'spin analyzing power' κ_{f} depends on particle identity:
- $\kappa_{b}=-\frac{m_{t}^{2}-2 m_{W}^{2}}{m_{t}^{2}+2 m_{W}^{2}} \simeq-0.4$
$0 \kappa_{W}=-\kappa_{b}$
- $\kappa_{\ell}=1, \quad \kappa_{\nu} \simeq-0.3$

$t \bar{t}$ from a resonance

- A well-studied scenario: $X \rightarrow t \bar{t}$
- Semi-leptonic events most promising channel for studying top polarization, just as in SM top pair spin correlations
- reduce (combinatoric) backgrounds
- exploit large spin analyzing power of ℓ
- Reconstruct missing p_{ν} (up to quadratic ambiguity) \Rightarrow reconstruct parent leptonic top
- can form distribution $\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{\ell}}$ and fully utilize maximal correlation of lepton
- Any additional particles in final state complicate the story
- If event contains multiple sources of missing energy, this technique can't be applied.
- Event reconstruction requires assumptions about event topology. Not necessarily desirable, especially in initial phases

Hadronic Tops

- Hadronic tops are completely reconstructable without information from rest of event
- trade reduced spin analyzing power for versatility, top ID
- best choice for tops coming from cascade decays with NP missing energy (e.g., SUSY cascades)
- depending on event selection, may wish to use either b-jet or reconstructed W
- Another potentially useful object can be constructed from the light quark jets
- cannot distinguish \bar{d} jet from u jet, but on average, \bar{d} less energetic than u in top rest frame
$\circ \Rightarrow$ form angular distribution of the softer light quark jet j
$\circ \kappa_{j} \simeq 0.5$ (Jezabek)

Boosted tops

- Tops from very massive new physics will be highly boosted, and their decay products will be collimated
- Boosted top ID requires novel techniques: an active field of study
(Kaplan, Rehermann, Schwartz, Tweedie; Thaler, Wang; Almeida, Lee, Perez, Sung, Virzi)
- Can construct variables which become independent of the top rest frame in the collinear limit
- compare $\tau \mathrm{s}$
- Leptonic tops: natural variable is fraction of visible lab frame energy carried by the lepton,

$$
u=\frac{\mathcal{E}_{\ell}}{\mathcal{E}_{\ell}+\mathcal{E}_{b}}
$$

Boosted leptonic tops

Distribution of u for positive (red) and negative (blue) helicity tops.

- Measurable distribution a linear combination of positive and negative helicity distributions according to degree of polarization $\left\langle\mathcal{P}_{D}\right\rangle$

Boosted hadronic tops

- Parton level: natural variables are energy fractions of b (or other final state parton):

$$
z \equiv \frac{\mathcal{E}_{b}}{\mathcal{E}_{t}}=\frac{E_{b}}{m_{t}}\left(1+\cos \theta_{b}\right)
$$

Distribution of z for positive (red) and negative (blue) helicity tops.

Boosted hadronic tops

- From partons to hadrons: (work in progress with D. Krohn, L.-T. Wang)
- look at energy fractions of subjets within top-tagged fat jet
- key question: how to choose subjet
- Avoid reliance on b - or W-tagging
- b-tagging efficiencies suffer at high energy
- W mass window a poor W tagger
- Instead, select candidate jet based on k_{T} distances between subjets: more robust to showering
- Candidate algorithm selects jet correlated with b :
- unwind top jet to obtain 3 hard subjets
- choose pair with minimum separation under k_{T} metric
- select the harder of the two jets.

Boosted hadronic tops

- Plot the energy fraction of this jet:

Parton level. Red $=$ right, Black $=$ left.

Boosted hadronic tops

- Plot the energy fraction of this jet:

Polarization from cascade decays

- Many well-motivated models feature cascade decays of the form (top partner) $\rightarrow t+$ (vector boson partner)
- decay produces polarized tops due to chiral couplings λ_{L}, λ_{R}
- can compute net production polarization $\left\langle\mathcal{P}_{P}\right\rangle$ as a function of particle masses

Net top quark polarization $\left\langle\mathcal{P}_{P}\right\rangle$ for couplings to pure t_{L}.
Red: fixed vector boson partner mass of 200 GeV Blue: vector boson partner mass of (top partner mass)-200 GeV Solid (dashed) lines: opposite- (same-) spin partners

From production to detection

- Cascades give net polarization $\left\langle\mathcal{P}_{P}\right\rangle$ along direction of motion in the parent rest frame. Not directly observable!

- Observable polarization is reduced: $\left\langle\mathcal{P}_{D}\right\rangle=\left\langle\mathcal{P}_{P}\right\rangle \cos \omega$
- $\cos \omega$: calculable function of particle masses, production dynamics

Wigner suppression

- $\cos \omega$ as a function of parent top partner boost β
- Red: $\left(M_{T}, M_{V}\right)=(500 \mathrm{GeV}, 150 \mathrm{GeV})$
- Green: $\left(M_{T}, M_{V}\right)=(900 \mathrm{GeV}, 300 \mathrm{GeV})$
- Blue: $\left(M_{T}, M_{V}\right)=(900 \mathrm{GeV}, 700 \mathrm{GeV})$

Conclusions

- Top polarization is a key to unraveling the chiral structure of new physics at the EWSB
- finite m_{t} complicates the story, but detailed quantitative predictions are possible
- many uses: measure detailed properties of new physics, separate signal from SM background,...
- Tops from new physics may show up in many different guises; need a variety of tools
- Utility of hadronic tops: as complement to leptonic tops, and in their own right
- higher branching ratios and potentially higher top ID efficiency may compensate for reduced spin analyzing power
- cascade decays and non-reconstructable events

