

Dependence of A_{FB} in tt Production on M_{tt}

Monica Tecchio University of Michigan

on behalf of the CDF Collaboration

DPF 2009 Top Quark Physics Parallel Session Detroit, July 27, 2009

- Motivation
- Experimental and Theoretical Input
- Measurement Technique
- Results
- Interpretation

Documentation:

WEB page: <u>http://www-cdf.fnal.gov/physics/new/top/2009/AfbMtt/</u>

Public Note:

http://www-cdf.fnal.gov/physics/new/top/confNotes/cdf9853_Afb_Mtt.pdf

Motivation

In a top-antitop data sample of L=3.2 fb⁻¹, CDF II measures an integral forward-backward asymmetry at <u>parton level</u> in <u>pp frame</u> of:

$$A_{fb}^{pp} = (19.3 \pm 6.5_{stat} \pm 2.3_{syst})\%$$

More than 2 sigma excess from NLO prediction $A_{FB}^{PP} = 5 \pm 1.5\%$

Previous measurements:

 CDF II (L=1.9 fb⁻¹): at parton level, both in pp and tt frame

$$A_{fb}^{pp} = (17 \pm 8)\% \qquad A_{fb}^{tt} = (24 \pm 13)\%$$

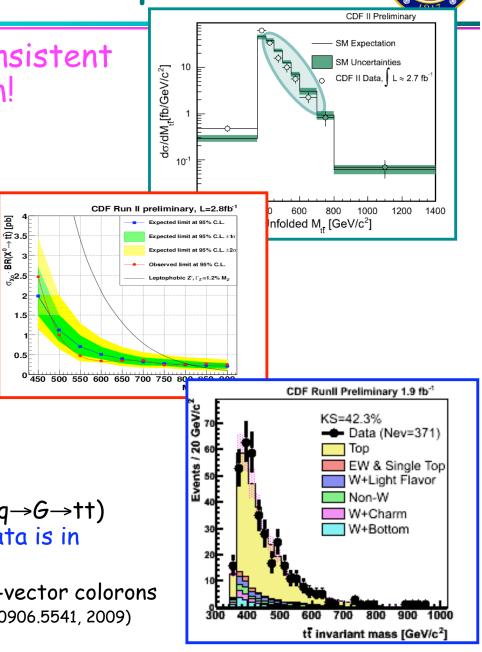
DO (L=0.9 fb⁻¹): at reconstruction level

 $\mathcal{A}_{fb}^{rec} = (12 \pm 8)\%$

We present a study of the dependence of A_{FB} "excess" on M_{tt} invariant mass

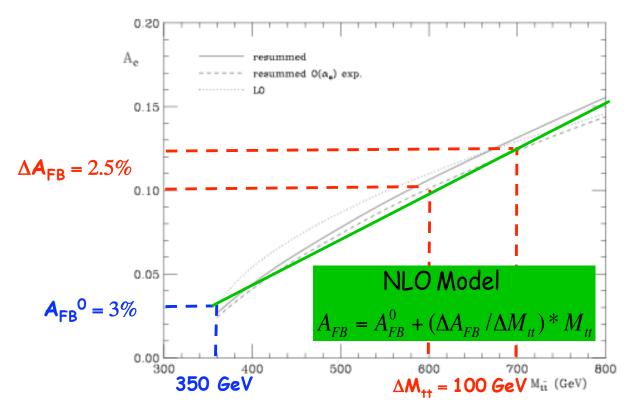
- Excess can be due presence of unknown particle with large A_{FB}
- Depending on the mass and nature of extra particle, excess can show itself as:
 - a bump in $A_{FB}(M_{tt})$
 - an edge or "kink" with sign change
 - slow raise at high M_{tt} values.

Pursue model independent measurement of $A_{FB}(M_{tt})$ assuming no change in M_{tt} spectrum as suggested by data. Monica Tecchio 3



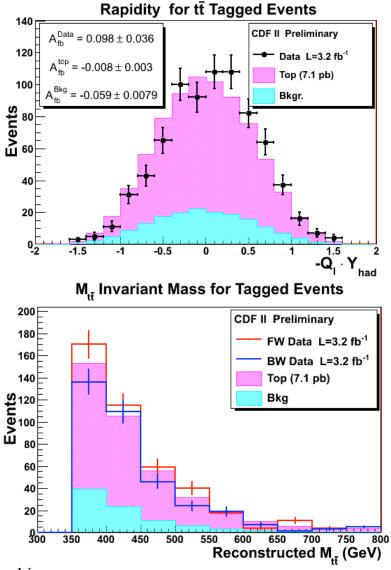
Any new particle has to be consistent with observed M₊₊ spectrum!

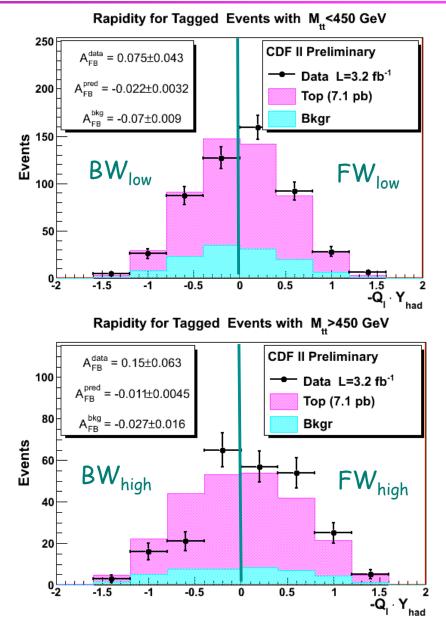
- Measurement of dott/dMtt after unfolding to parton level finds "no deviations from SM predictions"
 - KK excitations of gluons can explain "CDF data [..] systematically below the SM expectation" and predict A_{FB}^{SM+KK}≈ 11% (A.Djouadi et al., arXiv:0906.06041, 2009)
- Search for narrow Z' resonance sets limits M_{Z'} ≥ 800 GeV
 - ✓ Leptophobic Z' with preferential couplings to uubar-like fermions has A_{FB}^{Z'} ≈30% (J.Rosner, Phys.Lett.B387, 1996)
- Search for new color-octet particle ($qq \rightarrow G \rightarrow tt$) which interferes with $qq \rightarrow tt$, finds "data is in agreement with SM"
 - Positive A_{FB} has already excluded axial-vector colorons up to 1.4 TeV @90% (*P.Ferrario et al.*, arXiv:0906.5541, 2009)

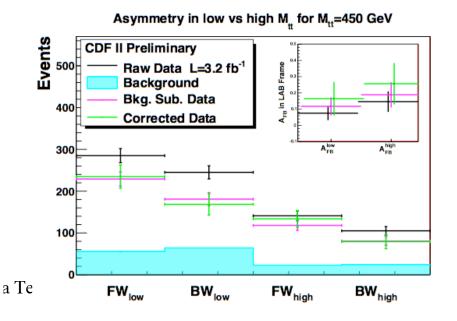


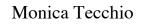
Theoretical Inputs

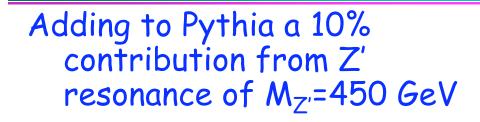
- NLO calculations predicts an overall slightly positive A_{FB}.
- It also predicts a "strong" mass dependence vs qq mass (Almeida at al., arXiv:0805.1885v1, 2008)
- We use NLO calculation as a model for A_{FB}(M_{tt}) with two approximations:
 - qq mass prediction can be used for tt mass frame dependence
 - A_{FB}(M_{tt}) is linearly dependent on M_{tt} in tt frame



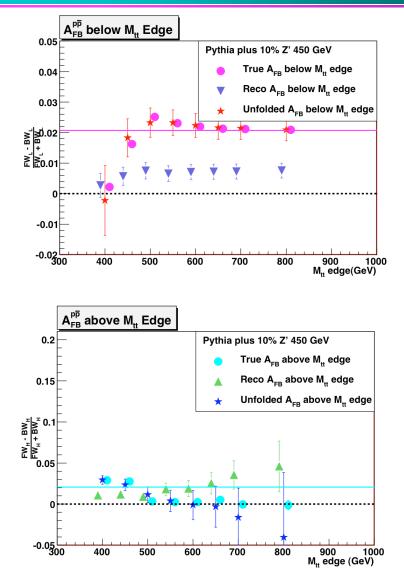

- In 3.2 fb⁻¹ data sample (same used for integral A_{FB} analysis), use $-Q_{I} * Y_{had}$ to measure top(antitop) angle in LAB frame for tagged ℓ +jets events, reconstructed with χ^{2} based fit to M_{top} =175 GeV
- divide events in FW vs BW events, below and above <u>reconstructed M_{tt}</u> threshold
- employ unfolding technique to go back to parton level both in rapidity and M_{tt}
- measure semi-integral asymmetries
 A_{FB}^{low} and A_{FB}^{high} w.r.t <u>parton-level</u>
 <u>M</u>_{tt}
- scan different M_{tt} threshold across allowed mass spectrum to look for bump or other structures




Measurement Technique

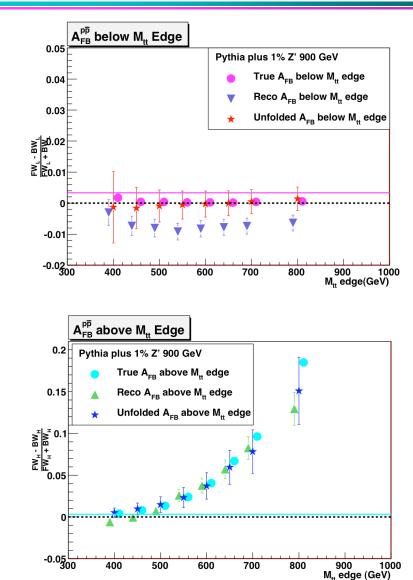


- Data are divided in 4 exclusive bins at <u>reconstruction level</u>
- Unfold signal events after background subtraction.
- Unfolding matrices correct for event selection and reconstruction resolution and return corrected number of events at <u>parton level</u>.



Examples of Unfolding M₊₊ Scan (I)

- Expected A_{FB}^{tt+Z'}≈2%
- In A_{FB}^{low} scan:
 - sharp increase up to A_{FB}^{tt+Z'}
 - shoot a bit up as we cross M₊₊=450 GeV
 - settles back toward $A_{FB}^{\dagger\dagger+Z'}$.
- In A_{FB}^{high} scan:
 - start above A_{FB}^{tt+Z'}
 - approach asymptotically the null value of A_{FB}^{tt} (LO Pythia!) as the Z' contribution fades out

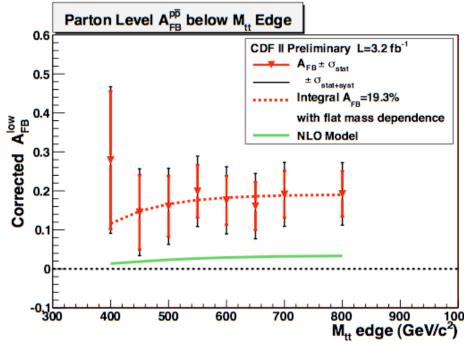


Examples of Unfolding M_{tt} Scan (II) Adding to Pythia a 1% contribution from Z' resonance of $M_{T'}$ =900 GeV

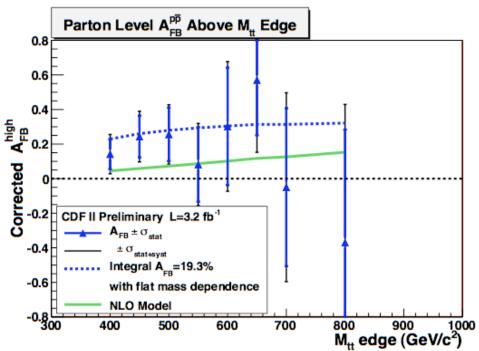
- In A_{FB}^{low} scan:
 - we never "see" Z' as the last M_{tt} threshold is still below M_{Z'}.
- In A_{FB}high scan:
 - continuous increase in the measured half-integral asymmetry as tt contribution dies off
 - will see bump at $A_{FB}^{Z'}$ if last M_{tt} threshold above $M_{Z'}$

Monica Tecchio

 Expected integral A_{FB}^{tt+Z'} is only 0.3% !!



Data Results and Interpretation



Solid green line is "NLO model", i.e. reweighted Monte Carlo model with A_{FB} linearly dependent on Mtt and constant term/slope and as per fit to NLL calculation.

Measurement is still statistical limited!

Dashed line is prediction for a reweighted^(*) Monte Carlo model with flat mass dependence and expected $A_{FB} = 19.3\%$ at parton level in pp frame.

(*) with asymmetric terms linear in $\text{cos}\theta$

We presented a measurement of top <u>forward-backward asymmetry vs M_{tt} </u> in a 3.2 fb⁻¹ data sample collected with CDF Run II detector at the Tevatron.

Analysis aims at model independent measurement of $A_{FB}(M_{tt})$ assuming no change in M_{tt} spectrum.

Unfolding technique is used to unsmear the effects of selection and reconstruction and get to the parton level simultaneously in rapidity and tt invariant mass.

Results are presented as half-integral parton level asymmetries in ppbar frame vs 8 different $M_{\rm tt}$ thresholds.

Data is compared to a model with constant A_{FB} independent of the mass and consistent with the measured integral A_{FB} and to a "NLO model" with A_{FB} linearly dependent on M_{tt} .

We will repeat with more data and more bins ("differential measurement"). Also using angular variable sensitive to ttbar frame (ex: $\Delta Y = -Q_1 * (Y_{had} - Y_{lep})$).

Backup slides

Dependence of A_{FB} in tt Production on M_{tt}

DPF 2009 Top Quark Physics Parallel Session Detroit, July 27, 2009

Unfolding Formalism

N is 4-dimensional vector

$$\vec{\mathrm{N}}_{cor} = (\mathrm{A}^{-1} \cdot \mathrm{S}^{-1}) ~ \vec{\mathrm{N}}_{raw}$$

A and S matrices are calculated using LO Pythia Monte Carlo

- A matrix is diagonal and calculates the relative acceptance for each bin
- S matrix corrects for reconstruction dilution of "true" events across FW vs
 BW events and across invariant mass regions.

 $\vec{N} = (FW_{\text{low}}, BW_{\text{low}}, FW_{\text{high}}, BW_{\text{high}})$

For low vs high threshold at $M_{t\bar{t}} = 450 \text{ GeV}/c^2$:

	0.915 ± 0.004	0 ± 0	0 ± 0	0 ± 0
A =	0 ± 0	0.956 ± 0.004	0 ± 0	0 ± 0
$A \equiv$	0 ± 0	0 ± 0	1.06 ± 0.01	0 ± 0
	0 ± 0	0 ± 0	0 ± 0	1.15 ± 0.01

 $S = \begin{bmatrix} 0.760 \pm 0.004 & 0.119 \pm 0.002 & 0.274 \pm 0.003 & 0.085 \pm 0.002 \\ 0.113 \pm 0.002 & 0.748 \pm 0.004 & 0.073 \pm 0.001 & 0.282 \pm 0.003 \\ 0.108 \pm 0.002 & 0.023 \pm 0.001 & 0.613 \pm 0.004 & 0.048 \pm 0.001 \\ 0.019 \pm 0.001 & 0.109 \pm 0.002 & 0.040 \pm 0.001 & 0.586 \pm 0.004 \end{bmatrix}$

Monica Tecchio

Mass Scan Results

Measured asymmetries at different steps in the unfolding procedure (L=3.2 fb⁻¹)

Uncertainties are statistical only, except for the final corrected AFB

	Forward-Backward Asymmetry Below M _{tt} Threshold				
$M_{t\bar{t}} (GeV/c^2)$	Raw A _{FB}	Bkgr A _{FB}	A _{FB} after bkg. sub.	Corr A ^{low} _{FB} to _{stat} o _{syst}	
400	0.111 ± 0.057	-0.072 ± 0.012	0.152 ± 0.070	$0.28 \pm 0.18 \pm 0.06$	
450	0.0755 ± 0.043	-0.069 ± 0.009	0.105 ± 0.052	$0.15 \pm 0.10 \pm 0.06$	
500	0.084 ± 0.040	-0.060 ± 0.009	0.112 ± 0.048	$0.16 \pm 0.08 \pm 0.06$	
550	0.099 ± 0.038	-0.059 ± 0.008	0.130 ± 0.045	$0.20 \pm 0.07 \pm 0.06$	
600	0.092 ± 0.037	-0.059 ± 0.008	0.122 ± 0.044	$0.18 \pm 0.06 \pm 0.06$	
650	0.087 ± 0.036	-0.061 ± 0.008	0.116 ± 0.044	$0.16 \pm 0.06 \pm 0.06$	
700	0.099 ± 0.036	-0.059 ± 0.008	0.130 ± 0.043	$0.19 \pm 0.06 \pm 0.06$	
800	0.100 ± 0.036	-0.058 ± 0.008	0.131 ± 0.043	$0.19 \pm 0.06 \pm 0.06$	

	Forward-Backward Asymmetry Above $M_{t\bar{t}}$ Threshold				
$M_{t\bar{t}}$ (GeV/ c^2)	Raw A_{FB}	Bkgr A _{FB}	A _{FB} after bkg. sub.	Corr A _{FB} ^{high} ± stat ± syst	
400	0.089 ± 0.046	-0.048 ± 0.011	0.113 ± 0.054	$0.14 \pm 0.09 \pm 0.07$	
450	0.146 ± 0.063	-0.031 ± 0.015	0.176 ± 0.074	$0.24 \pm 0.12 \pm 0.08$	
500	0.16 ± 0.08	-0.05 ± 0.02	0.196 ± 0.096	$0.26 \pm 0.15 \pm 0.07$	
550	0.09 ± 0.11	-0.050 ± 0.027	0.11 ± 0.13	$0.08 \pm 0.22 \pm 0.10$	
600	0.20 ± 0.16	-0.038 ± 0.038	0.24 ± 0.18	$0.30 \pm 0.34 \pm 0.16$	
650	0.38 ± 0.17	0.032 ± 0.05	0.42 ± 0.19	$0.57 \pm 0.32 \pm 0.27$	
700	0.06 ± 0.24	-0.008 ± 0.072	0.066 ± 0.267	$-0.05 \pm 0.46 \pm 0.30$	
800	-0.14 ± 0.38	-0.13 ± 0.12	-0.14 ± 0.40	$-0.37 \pm 0.65 \pm 0.46$	

14