

 J/Ψ

 $\boldsymbol{K^{+}}$

 $\bar{B^0_{\rm S}}$

q

 ψ / \mathbf{V}

 \mathbf{u}

Ignatio Redondo on behalf of the CDF Collaboration

Ignacio Redondo on behalf of theCDF Collaboration

Intro

- У. Proton-Antiproton Collider
- У. 1.96 TeV Center of Mass
- p. Huge b xsec at Tevatron
- 17.6 ± 0.4 (stat) + 2.5 -2.3 (syst) μb (CDF)
- P) 2.8 fb-1 used in this analysis
- У. \sim 6 fb⁻¹ delivered so far
- У. Expect \sim 10 fb⁻¹ by end of 2011

- F. B_s^0 system do oscillate into its antiparticle.
- CDF Observation was big news in 2006 (<u>PRL 97, 242003 2006</u>)
- F. Negligible CP violation in the B_s^0 system is a firm SM prediction
- A sizeable observation of CPV in the **J/**^Ψ ^Φ final state is a strong indication of physics beyond the SM

Intro

- У. Proton-Antiproton Collider
- У. 1.96 TeV Center of Mass
- p. Huge b xsec at Teva
- 17.6 ± 0.4 (stat) + 2.5 $-$ 2.5
- P) 2.8 fb⁻¹ used in the
- У. \sim 5 fb⁻¹ delivered som
- У. Expect \sim 10 fb⁻¹ by end

Any monster could behiding under the waves

> em do oscillate into its **particle.**

Fermi National Accelerator Laboratory - Aerial View

Tevatron

 $2 km$

- CDF Observation was big news in 2006 (<u>PRL 97, 242003 2006</u>)
- F. Negligible CP violation in the B_s^0 system is a firm SM prediction
- A sizeable observation of CPV in the **J/**^Ψ ^Φ final state is a strong indication of physics beyond the SM

CDF is probing the SM flavour sector by searching CPV in Bs⁰ oscillations

 CKM matrix connects mass and weak quark eigenstates-Expand CKM matrix in $\lambda = \sin(\theta_{\text{Cabiibo}}) \approx 0.23$

$$
\begin{pmatrix}\nV_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}\n\end{pmatrix} \approx \begin{pmatrix}\n1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\
-\lambda + \frac{1}{2}A^2\lambda^5[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4(1 + 4A^2) & A\lambda^2 \\
A\lambda^3[1 - (1 - \frac{1}{2}\lambda^2)(\rho + i\eta)] & -A\lambda^2 + \frac{1}{2}A\lambda^4[1 - 2(\rho + i\eta)] & 1 - \frac{1}{2}A^2\lambda^4\n\end{pmatrix}
$$

-To conserve probability CKM matrix must be unitary

 \rightarrow Unitary relations can be represented as "unitarity triangles"

unitarity relations:

$$
V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0
$$

$$
V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0
$$

unitarity triangles:

DPF 2009

4

 $O(1)$ $O(\lambda)$ $|O(\lambda^3)|$

 $O(\lambda)$ $O(1)$ $|O(\lambda^2)$

 $O(\lambda^3)$ $O(\lambda^2)$ $O(1)$

- CKM matrix connects mass and weak quark eigenstates
- -Expand CKM matrix in $\lambda = \sin(\theta_{\text{Cabiibo}}) \approx 0.23$

≈

- - To conserve probability CKM matrix must be unitary
	- → Unitary relations can be represented as "unitarity triangles"
□

unitarity relations:

unitarity triangles:

$$
V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0
$$

$$
\frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} \begin{pmatrix} \overline{(\overline{\rho},\overline{\eta})} & & V_{cs}V_{cb}^* \\ \overline{V_{cs}V_{cb}^*} & & \\ (0,0) & & & \overline{\mathcal{B}}_s \end{pmatrix} (1,0)
$$

 $O(1)$ $|O(\lambda)|$ $|O(\lambda^3)|$

 $O(\lambda)$ $|O(1)|$ $|O(\lambda^2)$

 $O(\lambda^3)$ $|O(\lambda^2)|$ $|O(1)$

- CKM matrix connects mass and weak quark eigenstates
- -Expand CKM matrix in $\lambda = \sin(\theta_{\text{Cabiibo}}) \approx 0.23$

- - To conserve probability CKM matrix must be unitary
	- \rightarrow Unitary relations can be represented as "unitarity triangles" \blacksquare

$$
V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0
$$

Very small CPV phase $\beta_{\rm s}$ of O(λ²)

≈

$$
O(\lambda^2) \sim \left| \frac{V_{us}V_{ub}^*}{V_{cs}V_{cb}^*} \right| \stackrel{\left(\overline{p},\overline{\eta}\right)}{(0,0)} = 1} \sim O(1)
$$

$$
\beta_s = \arg \left(-V_{tb} \overset{\rightharpoonup}{V^*_{ts}} / V_{cb} V^*_{cs}\right) \overset{\text{SM}}{\approx} 0.02
$$

B_s⁰ System mixing

(u,c)

 $\rm V_{ts}$

W

 V_{th}

 $\mathsf B_{\operatorname{s}}^{\:\scriptscriptstyle 0}$ i $\mathsf B_{\operatorname{s}}^{\:\scriptscriptstyle 0}$

ー
カ

 \overline{B}^0_s

- У. Time evolution of B_s^0 flavor eigenstates described by Schrodinger equation:
- P) Diagonalize mass (M) and decay (Γ) matrices
- У. Eigenstates have different mass and width eigenvalues:

 $\Delta m_{_S}$ = m_H - m_L ≈ 2|M₁₂| $\hskip 4mm \Delta\Gamma$ =Γ_L- Γ_H =2 Γ₁₂ cos(Φ) Φ=arg(-M₁₂/Γ₁₂)

p. SM expectation (A.Lenz &U Nierste hep-ph/0612167)

 Δm _s $= (19.3\pm6.7) \text{ ps}^{-1}$ $\Delta\Gamma_s = (0.096\pm0.039) \text{ ps}^{-1}$ $\Phi = (4.2\pm1.4)10^{-3}$ → B_s⁰ oscillates fast with frequency Δm_s precisely measured by CDF

A m (B 0) (17.77 + 0.19) no:1 $\Delta m_s(B_s^0) = (17.77 \pm 0.12) \text{ ps}^{-1}$ $\Delta m(B^0) \sim 0.5 \text{ ps}^{-1}$ $\Delta m(D^0) \sim 0.02 \text{ ps}^{-1}$ $\Delta m(K^0) \sim 0.005 \text{ ps}^{-1}$ bsbsM \blacktriangleleft TTய $\boldsymbol{\alpha}$ \sqrt{b} \sqrt{b} $\frac{b}{c}$ TI M A TT

 \overline{c}

 \overline{c}

 $\overline{\mathbf{s}}$

Φ

Ŵ

 B_s^0

 J/ψ

- F. $V_{cb}V_{cs}$ ^{*} accesible through the b→ccs decay
- Tree level: decay dominated by SM

New Physics would contribute to the CP violating phase

- **Decay of B_s⁰ (spin 0) to J/Ψ(spin 1) Φ(spin 1) akin to B⁰** \rightarrow **J/Ψ(spin 1) K₀^{*}(spin 1) C**₀ Thuse different CD(specular magnetum final states: CDLULL C 4 ULL C 4 O
- **■Three different CP/angular momentum final states: CP|J/Ψ Φ >=(-1)^L, L=0,1,2**
	- L = 0 (s-wave), 2 (d-wave) \rightarrow CP even
 1 (p-wave) \rightarrow CP odd
	- $L = 1$ (p-wave) \rightarrow CP odd
- If CP is conserved \rightarrow

 Light, short lived state should follow L=0,2 angular distributions and■Heavy long lived one should follow L=1 angular distributions Infer CP state from time dependent angular distributions

A flavor-tagged analysis of time dependent angular distributions

- F. Muon system is a combination of wire chambers and scintillator
- ×. Trigger efficiently in dimuons pt(mu)>1.5 GeV |η| <1.15
- Efficiency flat \sim 0.87 above 2 GeV
- No trigger bias in time distributions

- ×. Find **J/**^Ψ ^Φ Resonances
- F. ■ B_s⁰ mass (**J/Ψ Φ**)
- F. Angular distributions to infer CP state
- ×. Correct detector acceptance bias

COT: 96 layer drift chamber r=44-132 cm

 3_n

 \mathbb{R}^3 CDF has excellent tracking/mass resolution: $\sigma(p_T)/p_T \sim 0.1\% p_T/GeV$

K+

K-

Intermediate Silicon Tracker

 $\overline{J/\psi}$ μ^+

 \mathbf{S}

A flavor-tagged analysis of time dependent angular distributions

- $\mathcal{L}_{\mathcal{A}}$ SVX and L00 microstrip silicon detectors provide secondary vertexing
- \mathbb{R}^3 \blacksquare B_s⁰ Proper decay time = \blacksquare_{xy} m(B_s⁰)/p_T(B_s⁰)

- double-sided silicon **but the sided silicon** p. SVX:5 layers of r=2.5-25 cm
- \blacksquare L00 is glued on top of beam pipe, У. 1.35 cm from IP
- У. Single sided CMS type silicon
- p. Improves σ (cτ) by 20 %

- b. Particle identification capability from COT dE/dX and TOF scintillator system (not calibrated yet)
- \mathbb{R}^3 Same Side Tagger and Opposite Side Tagger algorithms

A flavor-tagged analysis of time dependent angular distributions

14

DPF 2009

Flavour tagging improvents

- **Revisit ∆msusing 2.8 fb**⁻¹ (vs.1 fb⁻¹ at discovery)
- Use Single decay mode
-
- B^0 _s → D_s· π⁺; D_s· →Φπ·(+c.c)

 SST performace independent of instantaneous luminosity

F. Developing global NNbased tagger which will be calibrated against ∆m.

- У. Use Neural Network to amass large B_s^0 sample
- P) Optimized on S/sqrt(S+B) where S is MC and B comes from side bands

Decay time distribution

CDF Run II Preliminary

Angular distributions, Tagging

Fit them all!

У. Likelihood constructed from 9 measured variables for signal and background

Fit Output

$$
f_s P_s(m|\sigma_m) P_s(t, \vec{\rho}, \vec{\xi} | \vec{\mathcal{D}}, \sigma_t) P_s(\sigma_t) P_s(\mathcal{D})
$$

+ (1 - f_s) P_b(m) P_b(t|\sigma_t) P_b(\vec{\rho}) P_b(\sigma_t) P_b(\vec{\mathcal{D}})

- M. Likelihood depends on 36 parameters
- M. First, assuming no CPV ($\beta_s=0$), measure relevant nuisance parameters:
	- \Box Width difference = 0.02 \pm 0.05 (stat.) \pm 0.01 (syst.) µm
	- \Box Average lifetime $= 459 \pm 12$ (stat.) ± 3 (syst.) µm

 \Box PDG: cт (B⁰) = 459 ±0.027 µm

 \Box HQET: cτ(B $_{\rm s}^{\rm o})$ = (1.00±0.01) cτ(B $^{\rm o})$

 $|A_{\parallel}(t=0)|^2 = 0.241 \pm 0.019$ (stat) ± 0.007 (syst) $|A_0(t=0)|^2 = 0.508 \pm 0.024$ (stat) \pm 0.008 (syst) CP even

- M. Then, adjust confidence region contours in the $\Delta\Gamma$ - β_s plane from the p-value distribution obtained from pseudo-experiments.
- F. Include systematics by recalculating p-value distribution over a 5 sigma range in the nuisance parameters and choosing worst case to define the confidence limit region.

Tagged & Untagged Results

- \mathbb{R}^3 **Fiavour tagging suppresses negative** $β_s$ **reducing significantly the allowed** parameter space
- $\mathcal{L}_{\mathcal{A}}$ **■** β_s in [0.28,1.29] @ 68% CL.

22 DPF 2009

The significance of CPV is 1.7 σ (p-value=7%)

 \mathbb{R}^3 Remaining symmetry can be broken using strong phases from other measurements

 $\beta_s \rightarrow \frac{\pi}{2} - \beta_s,$ $\Delta \Gamma \rightarrow -\Delta \Gamma$, $\delta_{\parallel} \rightarrow 2\pi - \delta_{\parallel}$, $\delta_{\perp} \rightarrow \pi - \delta_{\perp}.$

- \mathcal{L}_{max} Comparable CDF and D0 results.
	- Without external constraints in strong phases
	- With systematics

- DØ Note 5933-CONF
- $\mathcal{O}^{\mathcal{O}}_{\mathcal{O}}$ ■ Combination in the $\Delta\Gamma_s$ -β_s 2d slice of the n-dimension likelihoods F. Result could improve if simultaneous fit performed in all dimensions

23 DPF 2009

CDF/D0 ΔΓ_s,β_s Combination Working Group: Common CDF/D0 note CDF/PHYS/BOTTOM/CDFR/9787 - D0 Note 5928-CONF

Tevatron combination II

 $\mathcal{L}_{\mathcal{A}}$

- F. \blacksquare 1d βs range with $\Delta\Gamma_{\rm s}$ floating.
- M. $[0.10, 1.42]$ @ 95 % → p-value for the SM point is 2.0% or 2.33 σ
[0.27.0 Fo] U [0.27.1.20] ⊚ C9.8/ $[0.27, 0.59]$ U $[0.97, 1.30]$ @ 68 %

24 DPF 2009

CDF/D0 ΔΓ_s,β_s Combination Working Group: Common CDF/D0 note CDF/PHYS/BOTTOM/CDFR/9787 - D0 Note 5928-CONF

■ Intriguing 2σ effect, has not gone away:

Dec 2007 CDF(0.35 fb⁻¹) 1.35 σ Mar 2008 D0 (2.8 fb-1) 1.7 σJul 2008 Ext. Combo 2.2 σ

 Jul 2008 CDF(2.8 fb-1) 1.8 σJul 2009 CDF/D0 combo 2.12 σ

- **Assume constant efficiency, no analysis** improvements
- Π Assume $βs = 0.4$.

Reasonnable for ^t´ (Hou PRD76 16004, 2007)

Improvements in the pipeline

- Π Incorporate PID, improved tagging
- Π Factor \sim 3-4 in luminosity
- Π Simultaneous CDF/D0 fit

At the end of Run 2 there is a chance for 5 sigma sensitivity to large CPV in B_s^0 oscillations

THE END

27

DPF 2009

Ensuring coverage

$$
R(\Delta\Gamma_{\rm s}, \beta_{\rm s}) = \log \frac{L(\Delta\hat{\Gamma}_{\rm s}, \hat{\beta}_{\rm s}, \hat{\theta})}{L(\Delta\Gamma_{\rm s}, \beta_{\rm s}, \hat{\theta}^{\prime})}
$$

 $^{\wedge}$ = parameters that maximize likelihood L

 θ ' = nuisance parameters that maximize L at fixed $\Delta\Gamma_s$, β_s

Guarantees coverage at quoted C.L. Accounts for non-asymptotic behaviourof likelihood, i.e. log(L) non-parabolic, and possible large fluctuations of L shape from experiment-to-experiment

Include systematics by varying nuisance parameters within 5sigma of their estimates on data and choosing worst case to define the region

CDF/D0 combo CL distributions

- $\mathcal{L}_{\mathcal{A}}$ Assume constant efficiency, no analysis improvements
- $\mathcal{O}^{\mathcal{A}}$ βs ~ 0.3 for ^t´ Hou PRD76 16004, 2007

31

DPF 2009

- Spectator model of B mesons suggests that B_s and B⁰ have similar lifetimes and strong phases
- Likelihood profiles with external constraints from B factories:

constrain strong phases: constrain lifetime and strong phase

- External constraints on strong phases remove residual 2-fold ambiguity

- Up to now, introduced two different phases:

$$
\phi_s^{\rm SM} = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right) \approx 4 \times 10^{-3} \quad \text{and} \quad \beta_s^{\rm SM} = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*) \approx 0.02
$$

- New Physics affects both phases by same quantity $\langle \phi_s^{\rm NP}\rangle$ (arxiv:0705.3802v2):

$$
2\beta_s = 2\beta_s^{\text{SM}} - \phi_s^{\text{NP}}
$$

$$
\phi_s = \phi_s^{\text{SM}} + \phi_s^{\text{NP}}
$$

- If the new physics phase $\cdot\phi_s^{\text{NP}}$ dominates over the SM phases $2\beta_s^{\text{SM}}$ and \rightarrow neglect SM phases and obtain:
 $\widehat{\text{N}^{\text{D}}}$

$$
2\beta_s = -\phi_s^{\rm NP} = -\phi_s
$$

33 DPF 2009

 $|B_s^0\rangle$

 $|B_s^0\rangle$

 $\vert B_{\rm s}^{\overline{\prime} 0}\rangle$

 $| A_0 >$

 $|\mu^+\mu^- K^+K^->$

 $| A_{\perp} >$

- Three angular momentum states form a basis for the final J/ΨΦ state
- Use alternative "transversity basis" in which the vector meson polarizations w.r.t. direction of motion are either (Phys. Lett. B 369, 144 (1996), 184 hep-ph/9511363):
	- transverse $(\perp$ perpendicular to each other) \rightarrow CP odd
	- transverse (\parallel parallel to each other) \rightarrow \rightarrow CP even - longitudinal (0) \longrightarrow \rightarrow CP even
- \parallel ${\sf A}_{\parallel}$ >- Corresponding decay amplitudes: A $_0$, A $_\parallel$, A $_\perp$

34 DPF 2009

$\mathsf{B}_{\mathsf{s}} \to \mathsf{J}/\mathsf{Y}\mathsf{\Phi}$ Decay Rate

Measurement is a flavor-tagged analysis of time-dependent angular distributions

- $\mathsf{B}_{\mathrm{s}}\to$ J/ΨФ decay rate as function of time, decay angles and initial B_{s} flavor:

$$
\frac{d^4P(t, \vec{\rho})}{dt d\vec{\rho}} \propto |A_0|^2 T_+ f_1(\vec{\rho}) + |A_{||}|^2 T_+ f_2(\vec{\rho})
$$
\n
$$
+ |A_{\perp}|^2 T_- f_3(\vec{\rho}) + |A_{||}||A_{\perp}|U_+ f_4(\vec{\rho})
$$
\n
$$
+ |A_0||A_{||}|\cos(\delta_{||})T_+ f_5(\vec{\rho})
$$
\n
$$
+ |A_0||A_{\perp}|U_+ f_6(\vec{\rho}),
$$
\n
$$
T_{\pm} = e^{-\Gamma t} \times [\cosh(\Delta \Gamma t/2) \mp (\cos(2\beta_s) \sinh(\Delta \Gamma t/2) + \sinh(\Delta \Gamma t/2) + \sinh(2\beta_s) \sin(\Delta m_s t)]^2
$$
\n
$$
= \frac{1}{\sin(\delta_{\perp} - \delta_{||})} \cos(\Delta m_s t) \approx \frac{\sinh \Delta m_s \text{ dependence present}}{\sin(\delta_{\perp} - \delta_{||})} \cos(2\beta_s) \sin(\Delta m_s t)
$$
\n
$$
= \cos(\delta_{\perp} - \delta_{||}) \cos(2\beta_s) \sin(\Delta m_s t)
$$
\n
$$
= \cos(\delta_{\perp} - \delta_{||}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2)
$$
\n
$$
= \frac{\sin(\delta_{\perp} - \delta_{||}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2)}{\sinh(\Delta \Gamma t/2)}
$$
\n
$$
= \frac{\delta_{||}}{\sin(\delta_{||})} \cos(2\beta_s) \sin(\Delta m_s t)
$$
\n
$$
= \frac{\delta_{||}}{\cos(\delta_{\perp})} \cos(\delta_{\perp}) \sin(2\beta_s) \sinh(\Delta \Gamma t/2)
$$
\n
$$
= \frac{\delta_{||}}{\cos(\delta_{\perp})} \sin(\Delta m_s t)
$$
\n
$$
= \frac{\delta_{||}}{\cos(\delta_{\perp})} \cos(\delta_{\perp}) \sin(\Delta m_s t)
$$
\n
$$
= \frac{\delta_{||}}{\cos(\delta_{\perp})} \cos(\delta_{\perp}) \sin(\Delta m_s t)
$$
\n
$$
= \frac{\delta_{||}}{\cos(\delta_{\perp})} \sin(\Delta m_s t)
$$

Identification of B flavor at production (flavor tagging) → better sensitivity to β $_{\rm s}$

Measure polarization of $B_0\rightarrow \psi K^*$

 $c\tau$ = 456 \pm 6 (stat) \pm 6 (syst) μ m

 $|A_0(0)|^2 = 0.569 \pm 0.009$ (stat) \pm 0.009 (syst)

- $|A_{\parallel}(0)|^2 = 0.211 \pm 0.012$ (stat) \pm 0.006 (syst)
- δ_{\parallel} = -2.96 ± 0.08 (stat) ± 0.03 (syst)
- δ_{\perp} = 2.97 \pm 0.06 (stat) \pm 0.01 (syst)

35 DPF 2009

Consistent and competitive with B-factories