The Fourth Generation in Extensions of the Standard Model

Erin De Pree St. Mary's College of Maryland

Gardner Marshall, Marc Sher *The College of William & Mary*

THE PUBLIC HONORS COLLEGE

arXiv:0906.4500

Outline

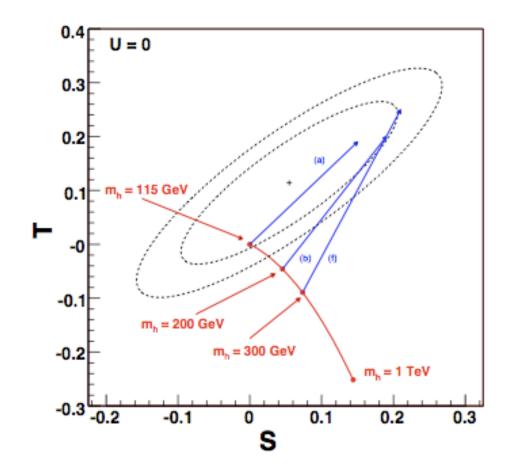
- Fourth Generation sequential, massive right-handed neutrino
 - History
 - Motivation

Extensions

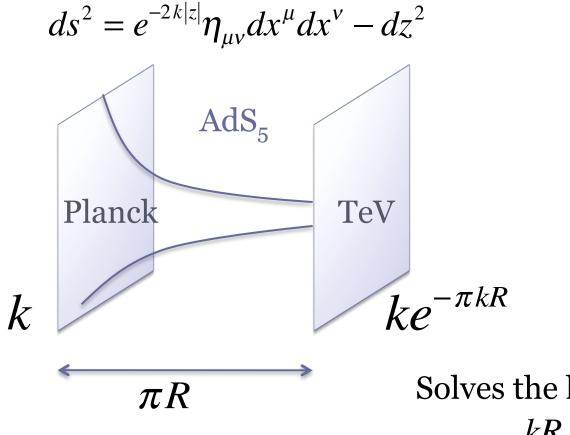
- Warped Extra Dimensions
- Two Higgs Doublet Models

History

- late 1970's 3rd family discovered, why not 4?
- 1990 Z-boson limits number of massless neutrinos to 3
- late 1990's neutrinos have mass
- early 2000's precision electroweak fits

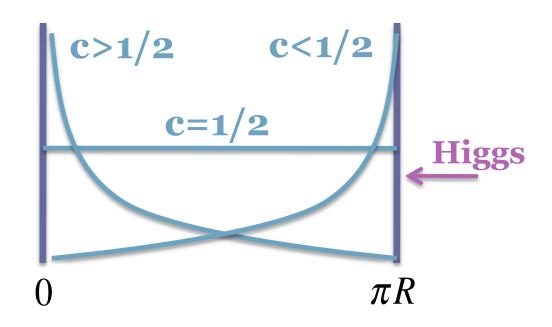

Precision electroweak fits

• PDG 2006


- A fourth generation of ordinary fermions is excluded to 99.999% CL on the basis of the S parameter alone
- For degenerate masses only
- Kribs, Plehn, Spannowsky, and Tait, 2007
 - Reminded that the PDG analysis assumed degenerate masses. Studied non-degenerate.

Non-degenerate masses

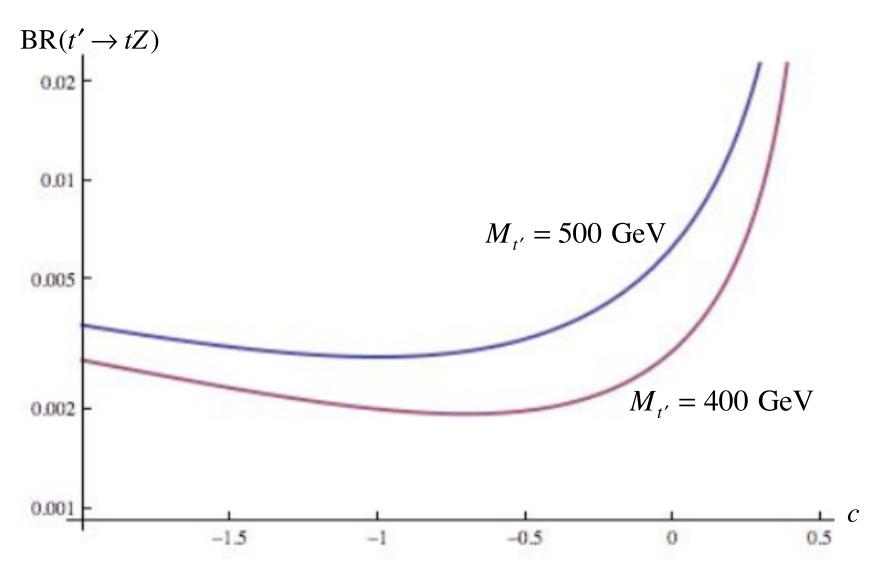
- For example:
 - M_{avg} = 350 GeV
 - $\Delta m = 50 \text{ GeV}$


Warped extra dimension

Solves the hierarchy problem if $kR \sim 11 - 12$

SM fields move into the bulk!

- Allowed
- c mass parameter
- Flavor hierarchy is determined by fermion geography


Consequences of fermions in the bulk

- *t*, *b* couple more strongly to KK-*Z*
 - KK-Z mixes with Z modifying $Zt\overline{t}$ and $Zb\overline{b}$ interactions
- $Zb\overline{b}$ coupling well measured, *b* must be kept away from TeV brane
- t_L also kept away from brane.
- Tension between large top mass and $Zb\overline{b}$ correction

More consequences of fermions in the bulk

- 5-D mass terms are diagonal
 - Not the same basis as 4-D mass basis
 - Allows flavor changing couplings in SM
- Add a 4th generation in the bulk
 - No EW precision constraints
 - Large flavor changing neutral currents

Warped extra dimension

Two Higgs doublet model

$$\left\langle \phi_{1} \right\rangle = \left(\begin{array}{c} 0 \\ \mathbf{v}_{1} \end{array} \right)$$

$$\left\langle \phi_{2} \right\rangle = \left(\begin{array}{c} 0 \\ \mathbf{v}_{2} e^{i\xi} \end{array} \right)$$

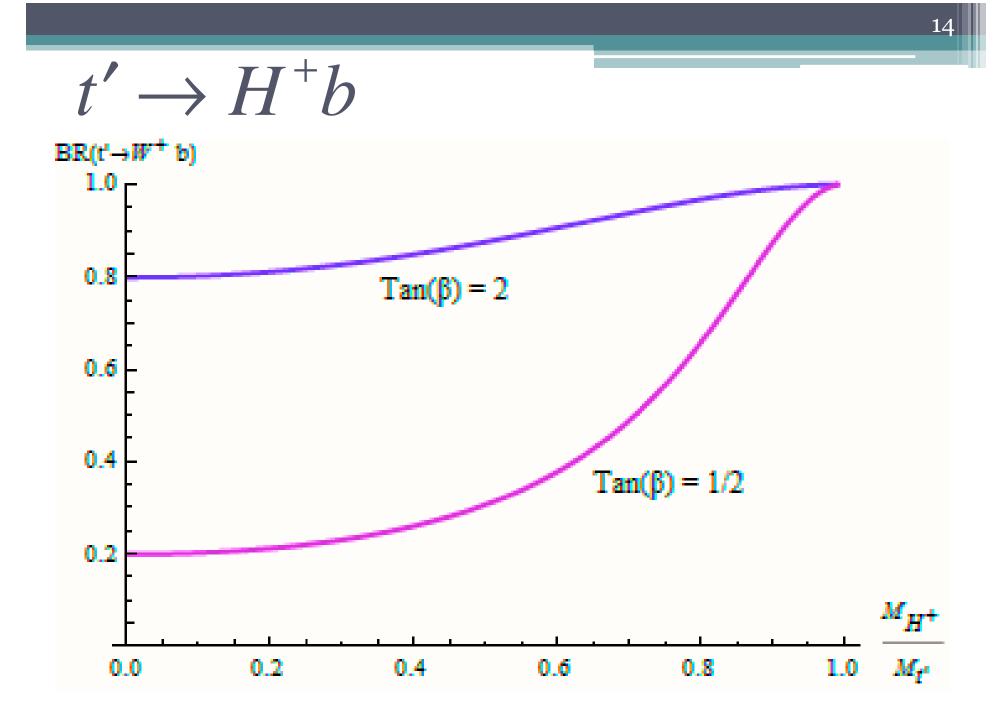
- Higgs sector:
 - H[±] charged Higgs pair
 - H, h neutral scalars
 - A neutral pseudoscalar

$$\tan\beta = \frac{v_2}{v_1}$$

Model II

- d, s, b, b' couple to ϕ_1
- u, c, t, t' couple to ϕ_2
- Limits $\tan \beta$

$$\frac{1}{\sqrt{2\pi(v/M)^2 - 1}} < \tan\beta < \sqrt{2\pi(v/M)^2 - 1}$$


for M > 280 GeV

$$\frac{1}{2} < \tan \beta < 2$$

Model I

- All fermions couple to $oldsymbol{\phi}_2$
- Only have a lower bound

$$\frac{1}{2} < \tan \beta$$

Model III

• All fermions couple to both ϕ_1 and ϕ_2

15

• Tree level FCNC:

$$\quad \lambda_{ij} \frac{\sqrt{m_i m_j}}{v / \sqrt{2}} \overline{f_i} f_j \phi$$

• $\phi = h, H, \text{ or } A$ (scalar or pseudoscalar)

Model III

• $t' \rightarrow t\phi$ dominates (if allowed)

- Cross-section
 - For *t*′ = 400 GeV
 - Is pb (arXiv:hep-ph/9801375)
- Leads to $t\overline{t}\phi\phi$ signature

$m_{\phi} < 140 {\rm ~GeV}$

- Final state $6b \ 2W$
- LHC *b* tagging efficiency of 40%
 - Look for 3 or more tagged *b*'s
 - Background: $t\overline{t}b\overline{b}$ production 4*b* 2*W* final state
 - Signal = 3150 fb
 - Background = 160 fb

 $m_{\phi} > 140 {\rm ~GeV}$

- Final state: 2*b* 6*W*
 - Look for: 3 + leptons 1 + b's
 - No known background
 - Signal = 1.8 pb

Conclusions

- 4th generation is allowed
- Warped Extra Dimensions
 - Noticeable BR changes
- Two Higgs Doublet Model
 - Model III dramatic signature

ekdepree@smcm.edu arXiv:0906.4500