

Measurement of $oldsymbol{B_c}$ properties at CDF (mass, lifetime and cross section)

Turgun Nigmanov

University of Michigan and University of Pittsburgh, on behalf of CDF

DPF 2009 WSU Detroit MI

July 26-31, 2009

introduction

B_c^+ meson is composed of a $ar{b}$ and c quarks

ullet Double heavy ${\sf B}_c^+$ properties are interesting to compare with heavy-light mesons, such as ${m B}^+, {m B}^0$ or ${m B}_s^0$

- Partial width from decays of either quark (a,b), or annihilation
 (c) make significant contribution to the total width:
 - predicted lifetime for B_c^+ is 0.55 \pm 0.15 ps (arXiv:hep-ph/0308214v1)
 - lifetimes of other B mesons are 3 times longer
- ullet Rich spectroscopy. ${\sf B}^+_c o J/\psi + \mu/e +
 u$ decay mode predicted to have a largest branching fraction:
 - used for lifetime and cross section measurements

B_c^+ mass measurements at CDF

- B⁺mass predictions:
 - nonrelativistic potential models: 6247-6286 MeV/c²
 - lattice QCD calculations: 6304±12 MeV/c²
- Precision measurements are needed to test these predictions
- ullet \mathbf{B}_c^+ is too heavy to be produced at e^+e^- colliders
- ullet CDF has a capability to make most precise mass measurement of ${\sf B}^+_c$ using hadronic decay mode: ${m B}^+_c o J/\psi \pi^+$

- Integrated luminosity: 2.2 fb⁻¹
- A signal: 108 ± 15 candidates
- $m(B_c^+) = 6275.6 \pm 2.9(stat) \pm 2.5(syst) MeV/c^2$
- Phys.Rev.Lett. 100,182002, 2008
- Studies are extended to higher luminosity

c au and $\sigma(B_c)$ measurement concepts

Lifetime:

- ullet Undetected u lead to the missing momentum in B_c decays
- We measure a pseudo-decay length:

$$\mathsf{ct}^* = \frac{M(B_c) L_{xy}(J/\psi{+}l)}{p_T(J/\psi{+}l)}$$

ullet Define K factor that relates ct of $oldsymbol{B}_c$ system to ct*:

$$\mathrm{Kct}^* = \mathrm{ct}$$
, where $\mathrm{ct} = \frac{mL_{xy}}{p_T}$

- Obtain K distribution from Monte Carlo
- ullet Write model for ct^* in terms of B_c lifetime, $\mathrm{c} au$, and distributions of K, H(K): $F_{B_c}(ct^*,\sigma)$ = $\sum_i H(K_i) rac{K_i}{c au} e^{rac{-K_i ct^*}{c au}} heta(ct^*) \otimes G(\sigma)$

where $oldsymbol{\sigma}$ is an error of ct* in event-by-event base

Cross section:

ullet Perform measurements for both mesons: B_c and B^+ and calculate a ratio:

$$\frac{\sigma(B_c^+)*BR(B_c^+ \to J/\psi + \mu^+ + \nu)}{\sigma(B^+)*BR(B^+ \to J/\psi + K^+)} = \frac{N(B_c^+)}{N(B^+)} \times \epsilon_{rel}$$

- Advantages:
 - $\sigma(B^+)$ and BR($B^+ o J/\psi K^+$) are well measured
 - Most of uncertainties for $J/\psi o \mu^+\mu^-$ and some for 3-rd track in $J\psi + Track$ system would be canceled
- ullet For this analysis we use $B_c^+
 ightarrow J/\psi \mu^+
 u$ where selection cuts require a high quality third muon

Analysis overview

Reconstruct $J/\psi o \mu^+\mu^-$ decays:

- ullet Data: use an inclusive J/ψ trigger stream with integrated luminosity of 1 fb $^{-1}$
- ullet Look for dimuons from $J/\psi
 ightarrow \mu^+\mu^-$ within of $|\eta| <$ 1.0

Dimuons from red area used as an input for both analysis

Reconstruct:

- ullet $B^+ o J/\psi + K^+$ (for both analysis: background normalization and ratio calculation)
- ullet $B_c^+ o J/\psi + l^+$ (where l either μ /e for lifetime and μ for cross section)

Backgrounds, common for both analysis:

- ullet Misidentified J/ψ : continuum J/ψ background from $J/\psi + \mu/e$ system.
- ullet Misidentified third muon: it can be caused by π or K hadrons due to decays-in-flight or punch through calorimetry and a steel absorber of 3.3 interaction lengths.
- ullet bb background. The J/ψ and l^+ originate from different b jets in same event.

Backgrounds, continue

Left: probabilities to mimic a μ

- $ullet D^{*+} o D^o \pi^+ o K^- \pi^+ \pi^+$ for π and K
- ullet $\Lambda^o o p^+\pi^-$ for protons

Right: ct* model for misidentified third muon background

Backgrounds, specific for each analysis:	lifetime	cross section
Other modes of B_c^+ with 3 μ in final state: $\psi(2S)\mu^+ o J/\psi\mu$	included	subtracted
Misidentified e^\pm - if $\pi/K/ar p$ satisfied e^\pm likelihood (calorimeter)	yes	n/a
Residual conversion - electrons from γ -conversion or $\pi^o ightarrow e^\pm +$	yes	n/a
Prompt J/ψ - additional $J/\psi l^+$ that are not accounted above	yes	negligible

Systematic uncertainties for lifetime analysis

Apply veto if electron is part of e^+e^- pair.

Top: veto efficiency, determined with Pythia Bottom: Fit ct* of reweighted veto events

Lifetime systematic uncertainties:

- Resolution function choice of model for detector resolution: 3.8 μm
- ullet Pythia model for $bar{b}$ background relative contribution of QCD processes: 2.4 μm
- Vertex detector alignment uncertainties in positions of silicon detectors: 2.0 μm
- ullet e^+e^- veto efficiency uncertainties related to modeling e^+e^- veto efficiencies: 1.5 μm
- ullet B_c spectrum variations of K factor distribution due to of variations in B_c production spectrum: 1.3 μm

Total uncertainty: \pm 5.5 (syst) μm

B_c^+ lifetime fits

Background sizes were constrained to it's predicted values. Prompt J/ψ allowed to float.

Fitted ct* for muon (on left) and electron (on right) channels.

$$c au_{\mu}$$
 = $179.1^{+32.6}_{-27.2}(stat)\mu m$ $c au_{e}$ = $121.7^{+18.0}_{-16.3}(stat)\mu m$

combined:
$$c au(B_c^+)$$
 = $142.5^{+15.8}_{-14.8}(stat)\pm 5.5(syst)\mu m$

Lifetime: comparison with other results

B_c^+ backgrounds for cross section

Backgrounds for $B_c^+ o J/\psi\mu^+$ decays and B_c^+ excess with the $p_T(3\mu)>$ 4 (6) GeV/c cuts.

	$p_T(B_c^+) > 4{ m GeV/c}$	$p_T(B_c^+) > 6$ GeV/c
$N(B_c^+)$ observed	229±15.1(stat)	214±14.6(stat)
Misidentified J/ψ	21.5±3.3(stat)	20.5±3.2(stat)
Misid. third muon	55.8±2.0(stat)	53.6±1.9(stat)
Doubly misidentified	-8.8±0.4(stat)	-7.5±0.3(stat)
$bar{b}$ background	37.7±7.3(st+sys)	35.4±7.0(st+sys)
Other decay modes	5.2±0.5(stat)	4.8±0.4(stat)
Total background	111.4±8.3(stat)	106.9±8.0(stat)
B_c^+ signal	$117.6\pm17.2(st)$	$107.1\pm16.7(st)$

Note: "Doubly misidentified" is a subsample of misid. J/ψ and misid. muon samples, it needs to be subtracted once to avoid double counting.

Upper plot: $B_c^+ \to J/\psi \mu^+$ candidates. Monte Carlo sample and backgrounds are superimposed. Lower: backgrounds are subtracted.

Relative efficiency, ϵ_{rel}

Relative efficiency ϵ_{rel} = $\epsilon_{B^+}/\epsilon_{B_c^+}$

- ullet MC simulations of $B_c^+ o J/\psi\mu^+
 u$, $B_c^* o B_c^+\gamma$ and $B^+ o J/\psi K^+$ decays need as input:
 - p_T dependence of B_c^+ production spectrum, we used it from PRD 72,114009(2005)
 - p_T dependence of B^+ production spectrum, we used it as at JHEP07,033(2004), good agreement with CDF measurements

	$p_T(B) > 4$ GeV/c	$p_T(B) > 6$ GeV/c
$\epsilon_{B_c^+}$ (%)	0.0551	0.1232
ϵ_{B^+} (%)	0.3231	0.6005
ϵ_{rel}	5.867 ± 0.068 (st)	4.873 ± 0.060 (st)

B_c^+ systematic uncertainty for cross section

- ullet Misidentified J/ψ : as this is derived from data, we do not assign a systematic uncertainty.
- ullet Misidentified muon: we calculate the uncertainties by varying the proton fraction in the $J/\psi + track$ sample. This is a dominant source of uncertainty.
- ullet background: we combine statistical and systematic uncertainties in the fit of the scale factors and their correlations. It included in the B_c^+ statistical uncertainty.
- ullet Other decay modes: we calculate the uncertainty by varying the branching ratios of the non-exclusive $B_c^+ o J/\psi + \mu^+ + X$ decays.

	$p_T(B) > 4{ m GeV/c}$	$p_T(B) > 6$ GeV/c
Misidentified muon	± 5.7	± 5.5
Doubly misidentified	± 0.9	± 0.8
$m{b}ar{m{b}}$ (illustration)	± 7.3 (st+sys)	± 7.0 (st+sys)
Other decay modes	$^{+6.0}_{-2.8}$	$+5.6 \\ -2.5$
Total	$^{+8.3}_{-6.4}$	$^{+7.9}_{-6.1}$

ϵ_{rel} systematic uncertainty for cross section

- ullet B_c^+ lifetime: it was estimated by varying the B_c^+ lifetime within $\pm 14 \mu$ m ($\sim 1 \sigma$) relative to the nominal value
- ullet B_c^+ spectrum: we estimate variations due to of three different theoretical approaches
- ullet B^+ spectrum: re-weight the simulated spectrum below 10 GeV/c to bring it into agreement with the data
- ullet μ ,K simulation: re-weighting the transverse momentum of the kaon and muon according to the measured differences in data

	$p_T(B) > 4{ m GeV/c}$	$p_T(B) > 6{ m GeV/c}$
B_c^+ lifetime	$+0.393 \\ -0.223$	$^{+0.354}_{-0.160}$
B_c^+ spectrum	± 0.720	± 0.298
B^+ spectrum	± 0.340	± 0.161
μ ,K simulation	± 0.192	± 0.160
ϵ_{rel} total systematics	$^{+0.554}_{-0.450}\pm0.720$ (spectrum)	$^{+0.420}_{-0.278} \pm 0.298$ (spectrum)

B_c^+ to B^+ ratio results

	$p_T(B) > 4$ GeV/c	$p_T(B) > 6$ GeV/c
$N(B_c^+)$	$117.6 \pm 17.2 ext{(stat)}_{-6.4}^{+8.3} ext{(sys)}$	$107.1 {\pm} 16.7 ext{(stat)}_{-6.1}^{+7.9} ext{(sys)}$
$N(B^+)$	2333 ± 55 (stat)	$2299{\pm}53$ (stat)
ϵ_{rel}	$5.867{\pm0.068}$ (stat)	$4.872 {\pm} 0.060$ (stat)
	$^{+0.554}_{-0.450}$ (sys) ± 0.720 (spectrum)	$^{+0.420}_{-0.278}$ (sys) ± 0.298 (spectrum)
$rac{N(B_c^+)}{N(B^+)} imes \epsilon_{rel}$	0.295 ± 0.040 (stat)	0.227 ± 0.033 (stat)
	$^{+0.033}_{-0.026}$ (sys) ± 0.036 (spectrum)	$^{+0.024}_{-0.017}$ (sys) ± 0.014 (spectrum)

Previous CDF measurements:

	L, pb^{-1}	$p_T(B) \ value$	$R = rac{\sigma(B_c^+) \cdot BR(B_c^+ ightarrow J/\psi + l^+ + u)}{\sigma(B^+) \cdot BR(B^+ ightarrow J/\psi + K^+)}$
$oxed{RunI,e+\mu}$	110	$p_T(B) > 6 \ GeV/c$	$0.132^{+0.041}_{-0.037}$ (st) ± 0.031 (sys) $^{+0.032}_{-0.020}$ (lt)
$Run~II$, μ	360	$p_T(B) > 6 GeV/c$	0.245 ± 0.045 (st) ± 0.066 (sys) $^{+0.080}_{-0.032}$ (lt)
RunII, e	360	$p_T(B) > 4 GeV/c$	$0.282{\pm}0.038$ (st) ±0.035 (y) ±0.065 (a)

B_c^+ total cross section

Available quantities:

Predicted
$$BR(B_c^+ \to J/\psi + l^+ + \nu)$$
 = 2.07×10^{-2} , PRD 73 054024 (2006) $BR(B^+ \to J/\psi + K^+)$ = $(1.007 \pm 0.035) \times 10^{-3}$ PDG, 2008 $\sigma(B^+)$ = $2.78 \pm 0.24~\mu$ b for $p_T(B^+) > 6$ GeV/c by CDF PRD 75:012010,2007

Then we might calculate followings:

$$\sigma(B_c^+) \cdot BR(B_c^+ o J/\psi + l^+ +
u) = 0.64 \pm 0.20 nb \, (p_T(B_c^+) > 6 \, {
m GeV/c})$$

$$\sigma(B_c^+) = rac{0.227 imes 2.78 \mu b imes 1.007 imes 10^{-3}}{2.07 imes 10^{-2}}$$
 = $31 \pm 10 \ nb$ ($p_T(B_c^+) > 6$ GeV/c)

Predicted
$$\sigma(B_c^+ + B_c^*)$$
:

	\sqrt{s} , TeV	y	p_T , GeV/c	$\boxed{\sigma(B_c^+ + B_c^*)}$
Chao-Hsi Chang ¹	1.96	< 0.6	> 4	23.3~nb
Phys.Lett.B605(2005)311	1.8	< 1	> 6	$7.4 \pm 5.4nb$

¹Chao-Hsi Chang, "Bc Production at Hadron Colliders" Sino-German Workshop, Sept. 20-23, 2006, DESY

conclusions

Prior to LHC data CDF is a major contributor to $oldsymbol{B}^+_c$ property studies:

mass measurements

m(
$$B_c^+$$
)= $6275.6 \pm 2.9 (stat) \pm 2.5 (syst)$ MeV/c 2 , PRL 100,182002, 2008

• decay properties:

$$c au(B_c^+)$$
 = $142.5^{+15.8}_{-14.8}(stat)\pm 5.5(syst)\mu m$

ullet production properties (for $p_T(B)>6$ GeV/c):

$$-\frac{\sigma(B_c^+)*BR(B_c^+\to J/\psi + \mu^+ + \nu)}{\sigma(B^+)*BR(B^+\to J/\psi + K^+)} = 0.227 \pm 0.033 \text{(stat)} \\ +0.024 \text{(sys)} \pm 0.014 \text{(spectrum)}$$

–
$$\sigma(B_c^+)\cdot BR(B_c^+ o J/\psi + l^+ +
u) = 0.64 \pm 0.20 nb$$
 (free from predictions)