

2009 Meeting of the Division of Particles and Fields of the American Physical Society (DPF 2009) 26-31 JULY 2009

Wayne State University, Detroit, MI

LHCb Prospects for Rare Decays

Marc-Olivier Bettler on behalf of the LHCb collaboration

Ecole Polytechnique Fédérale de Lausanne EPFL, Switzerland

Beyond Standard Model Session

SM and NP.

Flavor-changing neutral currents decays

Indirect search for New Physics through FCNC $b \rightarrow s$ transitions because:

- suppressed within SM
- precise theoretical predictions for SM values
- NP predictions significantly differ from SM ones

Effective Hamiltonian, Operator Product Expansion

 $C_i(\mu)$ Wilson coefficients: short-range

information such as mass of particles in loops.

Computed perturbatively for various models,

i= 1,2 tree i=3-6,8 g penguin γ penguin i=7 EW penguin i=9,10 (Pseudo-)Scalar P,S

slide 2

Room to uncover

 $\mathcal{O}_i(\mu)$ local operators: long-range contributions

New Physics possibly modifies the Wilson coefficients, affecting observable quantities as branching fractions, polarizations, and angular distributions.

$$\mathcal{H}_{\text{eff}} = -\frac{4G_{\text{F}}}{\sqrt{2}} V_{\text{CKM}} V_{\text{CKM}}^* \{ \sum_{i=1}^{10} C_i \mathcal{O}_i + C_P \mathcal{O}_P + C_S \mathcal{O}_s \}$$

$${}_{\mathrm{M}}\left\{\sum_{i=1}^{10}C_{i}\mathcal{O}_{i}+C_{P}\mathcal{O}_{P}+C_{S}\mathcal{O}_{s}\right.$$

Outline

Rare Decays at LHCb

$\mathcal{B}^{\circ} \rightarrow K^{\circ*} \mu \mu$ $b \rightarrow s l^{+} l^{-}$ $\mathcal{B}(B^{0} \rightarrow K^{*0} \mu^{+} \mu)$	$\vec{B}_{d} \xrightarrow{\vec{b}} W^{*} \xrightarrow{\vec{s}} K^{*}$ $\vec{u}, \vec{c}, \vec{t}$	C_7 C_7, C_9 and C_{10}	A _{FB} of the Muons Angular Distribution Full Angular Analysis	LHCb-roadmap-2 LHCb-2007-039 LHCb-2009-003
$ \begin{array}{l} \mathcal{B}^{\circ}_{s} \rightarrow \phi \gamma \\ b \rightarrow s \gamma \end{array} \\ \mathcal{B}(B^{0}_{s} \rightarrow \phi \gamma) = \end{array} $	$(5.7^{+2.2}_{-1.9}) \times 10^{-5}$	$C_7 = C_{7R} + C_{7L}$ $\frac{C_{7R}}{C_{7L}}$	Photon Polarization	LHCb-roadmap-4 LHCb-2007-030 LHCb-2007-147
$ \begin{array}{c} \mathcal{B}^{\circ}_{s} \rightarrow \mu \mu \\ \mathcal{B} \rightarrow l^{+}l^{-} \end{array} \\ \mathcal{B}(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) \Big _{S} \end{array} $	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & $	C_S, C_P and C_{10}	Branching Fraction	LHCb-roadmap-1 LHCb-2007-033 LHCb-2008-018
DPF09 July 30 2	009 MO. Bettler			slide 3

LHCb apparatus

See Eddy Jans talk

B°-> K*µµ Decay interest

- Flavor-changing neutral current b \rightarrow s transition
- First observed at Belle, compatible with SM Phys. Rev. Lett. 91:261601, 2003 $\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-) = 9.8 \times 10^{-7}$ PDGlive
- New Physics particles can enter in the loop and modify Wilson coefficients, particularly C_{7L}, C_{7R}, C₉ and C₁₀.
- The decay kinematics is defined by three angles ϕ , θ_K and θ_l and by q^2 the invariant mass squared of the muon pair.
- Two-step strategy:
 - From start, A_{FB} of the θ_l distribution, and particularly its zero-crossing point is particularly well predicted (FF cancel out) and experimentally accessible (acceptance distortion disappears)
 - With more data (>2 fb⁻¹) a full angular (ϕ , $\theta_{\rm K}$ and $\theta_{\rm l}$) analysis becomes possible, giving sensitivity to C₇, C₉ and C₁₀ Wilson coefficients.

Input AFB (S)

 1σ (7th order poly)

 2σ (7th order poly)

 A_{FB} and q_0^2 theoretically well predicted and differ with models. $q_0^2 = 4.36 \frac{+0.33}{-0.31}$ GeV²/c⁴ in SM. Eur. Phys. J. C41 173, 2005

- Belle and Babar results shows hint of discrepancy w.r.t SM. note: opposite A_{FB} sign convention between LHCb and B-factories!
- With a few hundreds pb⁻¹ LHCb can compete with Bfactories.

B°-> Κ*μμ

B°-> K*µµ Full Angular Analysis

- requires at least 2 fb⁻¹ together and full acceptance correction understanding.
- uses further observable quantities F_L , $A_T^{(2)}$, $A_T^{(3)}$, $A_T^{(4)}$
- some of which have NP predictions very different from the SM ones.

LHCb sensitivity for the full angular analysis with 10 fb⁻¹, the case of $A_T^{(3)}$ and $A_T^{(4)}$.

Photon polarization

- In the SM, right-handed photons (for $\overline{B^0}_s$) are suppressed by $\tan \psi \equiv \frac{A_R}{A_L} \propto \frac{m_s}{m_b}$
- In New Physics models (Left-Right symmetry, uMSSM) the photon polarization is free. Phys.Rev.D11 566, 1975 $\frac{b}{B^0}s^{-1}$
 - One indirectly access the photon polarization ratio through the time-dependent decay rate. Contrarily from the B⁰ case, it is particularly simple in the B⁰_s case, thanks to $\Delta\Gamma_s \neq 0$ and sin $\varphi_s \approx 0$, no tagging needed:

$$\Gamma_{B_s^0(\overline{B}_s^0)\to\phi\gamma}(t) = |A^2| \ e^{-\Gamma_s t} \left\{ \cosh\frac{\Delta\Gamma_s t}{2} - \mathcal{A}^\Delta \ \sinh\frac{\Delta\Gamma_s t}{2} \right\}$$
$$\mathcal{A}_{B_s^0}^\Delta \approx \sin 2\psi$$

- Experimental issue: trigger and offline selection uses IP cut for ϕ , which directly affects the B⁰_s proper time resolution. Control channel: $B^0 \to K^{*0}\gamma$
- Other possible channels to probe photon polarization. $\Lambda_b \to \Lambda^0 \gamma, \quad \Lambda_b \to (\Lambda^* \to pK^-)\gamma, \quad B^+ \to \phi K^+ \gamma$

Β[°]s -> Φγ

Yield and expected resolution ~10k selected events for 2 fb⁻¹ ~6k background events $\sigma(A^{\Delta}) \approx 0.22 \rightarrow \sigma(\psi) \approx 0.1$ with 2 fb⁻¹

B°s -> µµ Decay interest

- Very rare decay, further helicity suppressed, proceed through loops diagrams. Clean theoretical framework, precise SM prediction:
 B(B⁰_s → μ⁺μ⁻) = (3.35 ± 0.32) × 10⁻⁹ JHEP 10 003, 2006
- Current experimental limit, by CDF and DØ: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.7 \times 10^{-8} \text{ at } 90\% \text{ C.L.}$ PRL 100 101802, 2008 PRD 72 092001, 2007
- Branching fraction sensitive to C_S and C_P Wilson coefficients, is strongly enhanced by NP by a factor (tan β)⁶
- in cMSSM generalization (NUHM realization), best fit using WMAP Dark Matter, $(g-2)_{\mu}$ constraints gives: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) \sim 10^{-8}$ JHEP 10 092, 2007

B°, -> µµ Analysis Strategy I

Strategy for finding needles in one haystack

- loose selection
- Categorization of candidate events along three criteria:

1 Geometrical information

- \bullet Bs impact parameter with respect to the PV
- B_s proper time
- Smallest impact parameter significance of the muons candidates wrt any PVs
- The distance of closest approach of the two muons
- The isolation of the two muons tracks

 $B^0_{(s)} \rightarrow h^+ h^-$ for signal mass sidebands for bkgd

2 muon identification

$$J/\psi \to \mu^+ \mu^-$$
 for signal $\Lambda \to p\pi^-$ for bkgd

3 invariant mass of the di-muon

 $B_s^0 \to K^+ K^-$ for signal mass sidebands for bkgd

A 3D space is populated with the candidates, composing a distribution that can be tested against various branching fraction hypotheses.

B°, -> µµ Analysis Strategy II

• Normalization necessary to access absolute branching fraction.

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}_{\text{norm}} \times \frac{f_{\text{norm}}}{f_s} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{sig}}} \times \frac{\mathcal{N}_{\text{sig}}}{\mathcal{N}_{\text{norm}}}$$

Requires channels with well measured branching fraction and close to $B_s^0 \to \mu^+ \mu^-$ to control the efficiency ratio. The channels considered are $B^0 \to K^+ \pi^-$ and $B^+ \to J/\psi(\mu^+ \mu^-)K^+$

 $\rm f_s$ represents the main systematic error ~13%.

The 3D distribution obtained experimentally is tested against branching ratio hypotheses using the three likelihoods calibrated on data for signal and background with the CL method.
 One Exclude/Observe a branching fraction.

Since a result is possible with very little data already, an alternate analysis suitable for a not perfectly understood detector has been developed. This robust analysis is based on variables which do not involve error estimates. The overall strategy being identical to the standard analysis.

B°s -> µµ LHCb Sensitivity I

LHCb expected **exclusion** sensitivity to $B_s^0 \rightarrow \mu \mu$ (in case no signal is observed) as a function of the integrated luminosity with **plain black curves for the standard analysis** and **red dashed curves for the robust analysis**.

LHCb competes with the current Tevatron limit (4.7 10^{-8}) with less than 0.1 fb⁻¹, and overtake Tevatron expected final limit with about 0.2 fb⁻¹.

NP models with high $\tan\beta$ value are strongly constrained in the process.

B°s -> µµ LHCb Sensitivity II

LHCb expected **observation** sensitivity to $B_s^0 \rightarrow \mu \mu$ as a function of the integrated luminosity.

About 3 fb⁻¹ are enough for a 3σ observation if the branching fraction is the SM prediction. Any enhancement driven by NP will be observed sooner. If the branching fraction is ~2 ·10⁻⁸ as in NUHM scenario, a 5σ discovery is possible with

very little luminosity (< 0.5 fb^{-1}).JHEP 10 092, 2007With 10 fb⁻¹, a 5 σ discovery occurs if the branching fraction is close to the SM one.

LHCb is ready to collect the largest B meson sample ever. Interesting new results will follow:

Possible NP discovery very early with the $\mathcal{B}_{s}^{\circ} \rightarrow \mu\mu$ decay, or at least strong constraints on NP models with high tan β value within the first run of data-taking.

With 2 fb⁻¹, i.e. one year of data taking in nominal conditions:

 \mathcal{B}° -> $\mathcal{K}^*\mu\mu$ The zero crossing point of $\theta_l A_{FB}$ is measure with $\sigma(q_0^2) \approx 0.5 \text{ GeV}^2/c^4$

 $\mathcal{B}^{\circ}_{s} \rightarrow \phi \gamma$ The Time-dependent analysis leads to $\sigma(A^{\Delta}) \approx 0.22$, which gives $\sigma(\psi) \approx 0.1$

 $\mathcal{B}^{\circ}_{s} \rightarrow \mu\mu$ Limit on the branching fraction down to the SM prediction if no signal is observed, possible NP observation if the branching fraction is enhanced.

On the long term:

 $\mathcal{B}^{\circ}_{s} \to \mathcal{K}^{*}\mu\mu$ Full angular analysis, sensitive to C_{7}, C_{9} and C_{10} $\mathcal{B}^{\circ}_{s} \to \mu\mu$ 5 σ discovery if branching fraction at SM level with about 10 fb⁻¹.

You will hear from Rare Decays at LHCb soon, and for a long time !